Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Cranial imaging is not used for diagnosis of this condition. However, if MRI is performed, it may show cortical restricted diffusion with unusual characteristics of reversible T2 hypointensity in the subcortical white matter.
It is critical for patients who monitor glucose levels at home to be aware of which units of measurement their testing kit uses.
Glucose levels are measured in either:
1. Millimoles per liter (mmol/l) is the SI standard unit used in most countries around the world.
2. Milligrams per deciliter (mg/dl) is used in some countries such as the United States, Japan, France, Egypt and Colombia.
Scientific journals are moving towards using mmol/l; some journals now use mmol/l as the primary unit but quote mg/dl in parentheses.
Glucose levels vary before and after meals, and at various times of day; the definition of "normal" varies among medical professionals. In general, the normal range for most people (fasting adults) is about 4 to 6 mmol/l or 80 to 110 mg/dl. (where 4 mmol/l or 80 mg/dl is "optimal".) A subject with a consistent range above 7 mmol/l or 126 mg/dl is generally held to have hyperglycemia, whereas a consistent range below 4 mmol/l or 70 mg/dl is considered hypoglycemic. In fasting adults, blood plasma glucose should not exceed 7 mmol/l or 126 mg/dL. Sustained higher levels of blood sugar cause damage to the blood vessels and to the organs they supply, leading to the complications of diabetes.
Chronic hyperglycemia can be measured via the HbA1c test. The definition of acute hyperglycemia varies by study, with mmol/l levels from 8 to 15 (mg/dl levels from 144 to 270).
Defects in insulin secretion, insulin action, or both, results in hyperglycemia.
Insulin is given to reduce blood glucose concentration; however, as it also causes the movement of potassium into cells, serum potassium levels must be sufficiently high or dangerously low blood potassium levels may result. Once potassium levels have been verified to be greater than 3.3 mEq/l, then an insulin infusion of 0.1 units/kg/hr is started. The goal for resolution is a blood glucose of less than 200 mg/dL.
Diabetic coma was a more significant diagnostic problem before the late 1970s, when glucose meters and rapid blood chemistry analyzers were not universally available in hospitals. In modern medical practice, it rarely takes more than a few questions, a quick look, and a glucose meter to determine the cause of unconsciousness in a patient with diabetes. Laboratory confirmation can usually be obtained in half an hour or less. Other conditions that can cause unconsciousness in a person with diabetes are stroke, uremic encephalopathy, alcohol, drug overdose, head injury, or seizure.
Fortunately, most episodes of diabetic hypoglycemia, DKA, and extreme hyperosmolarity do not reach unconsciousness before a family member or caretaker seeks medical help.
The guidelines for preventing impaired fasting glucose are the same as those given for preventing type 2 diabetes in general. If these are adhered to, the progression to clinical diabetes can be slowed or halted. In some cases, a complete reversal of IFG can be achieved. Certain risk factors, such as being of Afro-Caribbean or South Asian ethnicity, as well as increasing age, are unavoidable, and such individuals may be advised to follow these guidelines, as well as monitor their blood glucose levels, more closely.
The gold standard for investigating and quantifying insulin resistance is the "hyperinsulinemic euglycemic clamp," so-called because it measures the amount of glucose necessary to compensate for an increased insulin level without causing hypoglycemia. It is a type of glucose clamp technique. The test rarely is performed in clinical care, but is used in medical research, for example, to assess the effects of different medications. The rate of glucose infusion commonly is referred to in diabetes literature as the GINF value.
The procedure takes about two hours. Through a peripheral vein, insulin is infused at 10–120 mU per m per minute. In order to compensate for the insulin infusion, glucose 20% is infused to maintain blood sugar levels between 5 and 5.5 mmol/L. The rate of glucose infusion is determined by checking the blood sugar levels every five to ten minutes.
The rate of glucose infusion during the last thirty minutes of the test determines insulin sensitivity. If high levels (7.5 mg/min or higher) are required, the patient is insulin-sensitive. Very low levels (4.0 mg/min or lower) indicate that the body is resistant to insulin action. Levels between 4.0 and 7.5 mg/min are not definitive, and suggest "impaired glucose tolerance," an early sign of insulin resistance.
This basic technique may be enhanced significantly by the use of glucose tracers. Glucose may be labeled with either stable or radioactive atoms. Commonly used tracers are 3-H glucose (radioactive), 6,6 H-glucose (stable) and 1-C Glucose (stable). Prior to beginning the hyperinsulinemic period, a 3h tracer infusion enables one to determine the basal rate of glucose production. During the clamp, the plasma tracer concentrations enable the calculation of whole-body insulin-stimulated glucose metabolism, as well as the production of glucose by the body (i.e., endogenous glucose production).
Nonketotic hyperosmolar coma usually develops more insidiously than DKA because the principal symptom is lethargy progressing to obtundation, rather than vomiting and an obvious illness. Extremely high blood sugar levels are accompanied by dehydration due to inadequate fluid intake. Coma from NKHC occurs most often in patients who develop type 2 or steroid diabetes and have an impaired ability to recognize thirst and drink. It is classically a nursing home condition but can occur in all ages.
The diagnosis is usually discovered when a chemistry screen performed because of obtundation reveals an extremely high blood sugar level (often above 1800 mg/dl (100 mM)) and dehydration. The treatment consists of insulin and gradual rehydration with intravenous fluids.
Another measure of insulin resistance is the modified insulin suppression test developed by Gerald Reaven at Stanford University. The test correlates well with the euglycemic clamp, with less operator-dependent error. This test has been used to advance the large body of research relating to the metabolic syndrome.
Patients initially receive 25 μg of octreotide (Sandostatin) in 5 mL of normal saline over 3 to 5 minutes via intravenous infusion (IV) as an initial bolus, and then, are infused continuously with an intravenous infusion of somatostatin (0.27 μg/m/min) to suppress endogenous insulin and glucose secretion. Next, insulin and 20% glucose are infused at rates of 32 and 267 mg/m/min, respectively. Blood glucose is checked at zero, 30, 60, 90, and 120 minutes, and thereafter, every 10 minutes for the last half-hour of the test. These last four values are averaged to determine the steady-state plasma glucose level (SSPG). Subjects with an SSPG greater than 150 mg/dL are considered to be insulin-resistant.
If a person cannot receive oral glucose gel or tablets, such as the case with unconsciousness, seizures, or altered mental status, then emergency personnel (EMTs/Paramedics and in-hospital personnel) can establish a peripheral or central IV line and administer a solution containing dextrose and saline. These are normally referred to as Dextrose (Concentration) Water, and come in 5%, 10%, 25% and 50%. Dextrose 5% and 10% come in IV bag and syringe form, and are mainly used in infants and to provide a fluid medium for medications. Dextrose 25% and 50% are heavily necrotic due to their hyperosmolarity, and should only be given through a patent IV line - Any infiltration can cause massive tissue necrosis. CAUTION: Dextrose 25% and 50% can easily cause necrosis in small veins. It is MUCH safer to use a Dextrose 10% solution when treating hypoglycemia via IV in children under the age of 14. When using Dextrose 25% in a child it is safer to administer it through a central line or an intra-oseous line.
The blood glucose can usually be raised to normal within minutes with 15-20 grams of carbohydrate, although overtreatment should be avoided if at all possible. It can be taken as food or drink if the person is conscious and able to swallow. This amount of carbohydrate is contained in about 3-4 ounces (100-120 mL) of orange, apple, or grape juice, about 4-5 ounces (120-150 mL) of regular (non-diet) soda, about one slice of bread, about 4 crackers, or about 1 serving of most starchy foods. Starch is quickly digested to glucose, but adding fat or protein retards digestion. Composition of the treatment should be considered, as fruit juice is typically higher in fructose which takes the body longer to metabolize than simple dextrose alone. Following treatment, symptoms should begin to improve within 5 to 10 minutes, although full recovery may take 10–20 minutes. It should be noted that over treatment does not speed recovery, and will simply produce hyperglycemia afterwards, which ultimately will need to be corrected. On the other hand, since the excess of insulin over the amount required to normalize blood sugar may continue to reduce blood sugar levels after treatment has produced an initial normalization, continued monitoring is required to determine if further treatment is necessary.
Treatment of hyperglycemia requires elimination of the underlying cause, such as diabetes. Acute hyperglycemia can be treated by direct administration of insulin in most cases. Severe hyperglycemia can be treated with oral hypoglycemic therapy and lifestyle modification.
In diabetes mellitus (by far the most common cause of chronic hyperglycemia), treatment aims at maintaining blood glucose at a level as close to normal as possible, in order to avoid these serious long-term complications. This is done by a combination of proper diet, regular exercise, and insulin or other medication such as metformin, etc.
Those with hyperglycaemia can be treated using sulphonylureas or metformin or both. These drugs help by improving glycaemic control
Dipeptidyl peptidase 4 inhibitor alone or in combination with basal insulin can be used as a treatment for hyperglycemia with patients still in the hospital.
Different organisations use slightly differing levels before classifying a person's fasting blood glucose as "impaired", with the American Diabetes Association using a lower cutoff in its criteria than the World Health Organization. The upper limits remain the same, as fasting levels above this are almost universally accepted as indicative of full diabetes:
- WHO criteria: fasting plasma glucose level from 6.1 mmol/l (110 mg/dL) to 6.9 mmol/l (125 mg/dL).
- ADA criteria: fasting plasma glucose level from 5.6 mmol/L (100 mg/dL) to 6.9 mmol/L (125 mg/dL).
Fasting plasma glucose screening should begin at age 30–45 and be repeated at least every three years. Earlier and more frequent screening should be conducted in at-risk individuals. The risk factors for which are listed below:
- Family history (parent or sibling)
- Dyslipidemia (triglycerides > 200 or HDL < 35)
- Overweight or obesity (body mass index > 25)
- History of gestational diabetes or infant born with birth weight greater than
- High risk ethnic group
- Hypertension (systolic blood pressure >140 mmHg or diastolic blood pressure > 90 mmHg)
- Prior fasting blood glucose > 99
- Known vascular disease
- Markers of insulin resistance (PCOS, acanthosis nigricans)
Diagnosis can be made by checking fasting and post prandial insulin levels either with normal meal or with 100gms of oral glucose
Diagnosis of TNDM and PNDM
The diagnostic evaluations are based upon current literature and research available on NDM. The following evaluation factors are: patients with TNDM are more likely to have intrauterine growth retardation and less likely to develop ketoacidosis than patients with PNDM. TNDM patients are younger at the age of diagnosis of diabetes and have lower insulin requirements, an overlap occurs between the two groups, therefore TNDM cannot be distinguished from PNDM based clinical feature. An early onset of diabetes mellitus is unrelated to autoimmunity in most cases, relapse of diabetes is common with TNDM, and extensive follow ups are important. In addition, molecular analysis of chromosomes 6 defects, KCNJ11 and ABCC8 genes (encoding Kir6.2 and SUR1) provide a way to identify PNDM in the infant stages. Approximately,50% of PNDM are associated with the potassium channel defects which are essential consequences when changing patients from insulin therapy to sulfonylureas.
TNDM Diagnosis associated with Chromosome 6q24 Mutations
The uniparental disomy of the chromosome can be used as diagnostic method provide proof by the analysis of polymorphic markers is present on Chromosome 6. Meiotic segregation of the chromosome can be distinguished by comparing allele profiles of polymorphic makers in the child to the child's parents' genome. Normally, a total uniparental disomy of the chromosome 6 is evidenced, but partial one can be identified. Therefore, genetic markers that are close to the region of interest in chromosome 6q24 can be selected. Chromosome duplication can found by that technique also.
Medical Professionals of NDM
- Physician
- Endocrinologist
- Geneticist Counselor
Diagnostic Test of NDM
- "Fasting plasma glucose test": measures an diabetic's blood glucose after he or she has gone 8 hours without eat. This test is used to detect diabetes or pre-diabetes
- "Oral glucose tolerance test"- measures an individual's blood glucose after he or she have gone at least 8 hours without eating and two hours after the diabetic individual have drunk a glucose-containing beverage. This test can be used to diagnose diabetes or pre-diabetes
- "Random plasma glucose test"-the doctor checks one's blood glucose without regard to when an individual may have ate his or her last meal. This test, along with an evaluation of symptoms, are used to diagnose diabetes but not pre-diabetes.
Genetic Testing of NDM
- "Uniparental Disomy Test:"
Samples from fetus or child and both parents are needed for analysis. Chromosome of interest must be specified on request form. For prenatal samples (only): if the amniotic fluid (non-confluent culture cells) are provided. Amniotic fluid is added and charged separately. Also, if chorionic villus sample is provided, a genetic test will be added and charged separately. Microsatellites markers and polymerase chain reaction are used on the chromosomes of interest to test the DNA of the parent and child to identify the presence of uni"parental disomy""."
- Intrauterine Growth Restriction
"Apgar score is" a test given after birth to test the baby's physical condition and evaluate if special medical care is needed.
The American College of Endocrinology (ACE) and the American Association of Clinical Endocrinologists (AACE) have developed "lifestyle intervention" guidelines for preventing the onset of type 2 diabetes:
- Healthy meals (a diet with no saturated and trans fats, sugars, and refined carbohydrates, as well as limited the intake of sodium and total calories)
- Physical exercise (30–45 minutes of cardio vascular exercise per day, five days a week)
- Reducing weight by as little as 5–10 percent may have a significant impact on overall health
Absolute numbers vary between pets, and with meter calibrations. Glucometers made for humans are generally accurate using feline blood except when reading lower ranges of blood glucose (<80 mg/dl–4.44 mmol/L). At this point the size difference in human and animal red blood cells can create inaccurate readings.
No major organization recommends universal screening for diabetes as there is no evidence that such a program improve outcomes. Screening is recommended by the United States Preventive Services Task Force (USPSTF) in adults without symptoms whose blood pressure is greater than 135/80 mmHg. For those whose blood pressure is less, the evidence is insufficient to recommend for or against screening. There is no evidence that it changes the risk of death in this group of people. They also recommend screening among those who are overweight and between the ages of 40 and 70.
The World Health Organization recommends testing those groups at high risk and in 2014 the USPSTF is considering a similar recommendation. High-risk groups in the United States include: those over 45 years old; those with a first degree relative with diabetes; some ethnic groups, including Hispanics, African-Americans, and Native-Americans; a history of gestational diabetes; polycystic ovary syndrome; excess weight; and conditions associated with metabolic syndrome. The American Diabetes Association recommends screening those who have a BMI over 25 (in people of Asian descent screening is recommended for a BMI over 23).
The risk of progression to diabetes and development of cardiovascular disease is greater than for impaired fasting glucose.
Although some drugs can delay the onset of diabetes, lifestyle modifications play a greater role in the prevention of diabetes. Patients identified as having an IGT may be able to prevent diabetes through a combination of increased exercise and reduction of body weight. "Drug therapy can be considered when aggressive lifestyle interventions are unsuccessful."
Treatment is typically achieved via diet and exercise, although metformin may be used to reduce insulin levels in some patients (typically where obesity is present). A referral to a dietician is beneficial. Another method used to lower excessively high insulin levels is cinnamon as was demonstrated when supplemented in clinical human trials.
A low carbohydrate diet is particularly effective in reducing hyperinsulinism.
A healthy diet that is low in simple sugars and processed carbohydrates, and high in fiber, and vegetable protein is often recommended. This includes replacing white bread with whole-grain bread, reducing intake of foods composed primarily of starch such as potatoes, and increasing intake of legumes and green vegetables, particularly soy.
Regular monitoring of weight, blood sugar, and insulin are advised, as hyperinsulinemia may develop into diabetes mellitus type 2.
It has been shown in many studies that physical exercise improves insulin sensitivity. The mechanism of exercise on improving insulin sensitivity is not well understood however it is thought that exercise causes the glucose receptor GLUT4 to translocate to the membrane. As more GLUT4 receptors are present on the membrane more glucose is taken up into cells decreasing blood glucose levels which then causes decreased insulin secretion and some alleviation of hyperinsulinemia. Another proposed mechanism of improved insulin sensitivity by exercise is through AMPK activity. The beneficial effect of exercise on hyperinsulinemia was shown in a study by Solomon et al. (2009), where they found that improving fitness through exercise significantly decreases blood insulin concentrations.
Differential diagnosis includes nephrogenic diabetes insipidus, neurogenic/central diabetes insipidus and psychogenic polydipsia. They may be differentiated by using the water deprivation test.
Recently, lab assays for ADH are available and can aid in diagnosis.
If able to rehydrate properly, sodium concentration should be nearer to the maximum of the normal range. This, however, is not a diagnostic finding, as it depends on patient hydration.
DDAVP can also be used; if the patient is able to concentrate urine following administration of DDAVP, then the cause of the diabetes insipidus is neurogenic; if no response occurs to DDAVP administration, then the cause is likely to be nephrogenic.
Diet is a critical component of treatment, and is in many cases effective on its own. For example, a recent mini-study showed that many diabetic cats stopped needing insulin after changing to a low carbohydrate diet.
The rationale is that a low-carbohydrate diet reduces the amount of insulin needed and keeps the variation in blood sugar low and easier to predict. Also, fats and proteins are metabolized slower than carbohydrates, reducing dangerous blood-sugar peaks right after meals.
Recent recommended diets are trending towards a low carbohydrate diet for cats rather than the formerly-recommended high-fiber diet. Carbohydrate levels are highest in dry cat foods made out of grains (even the expensive "prescription" types) so cats are better off with a canned diet that is protein and fat focused. Both prescription canned foods made for diabetic cats and regular brand foods are effective. Owners should aim to supply no more than 10% of the daily energy requirement of cats with carbohydrates.
As of 2010, there were about 675,000 diabetes-related emergency department (ED) visits in the U.S. which involved neurological complications, 409,000 ED visits with kidney complications, and 186,000 ED visits with eye complications.
Complications of diabetes mellitus are acute and chronic. Risk factors for them can be modifiable or not modifiable.
Overall, complications are far less common and less severe in people with well-controlled blood sugar levels.
However, (non-modifiable) risk factors such as age at diabetes onset, type of diabetes, gender and genetics play a role. Some genes appear to provide protection against diabetic complications, as seen in a subset of long-term diabetes type 1 survivors without complications .
The outcome for infants or adults with NDM have different outcomes among carriers of the disease. Among affected babies, some have PNDM while others have relapse of their diabetes and other patients may experience permanent remission. Diabetes may reoccur in the patient's childhood or adulthood. It was estimated that neonatal diabetes mellitus will be TNDM in about 50% are half of the cases.
During the Neonatal stage, the prognosis is determined by the severity of the disease (dehydration and acidosis), also based on how rapidly the disase is diagnosed and treated. Associated abnormalities (e.g. irregular growth in the womb or enlarged tongue) can effect a person's prognosis. The long-term prognosis depends on the person's metabolic control, which effects the presence and complications of diabetes complications. The prognosis can be confirmed with genetic analysis to find the genetic cause of the disease. WIth proper management, the prognosis for overall health and normal brain development is normally good. It is highly advised people living with NDM seek prognosis from their health care provider.