Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There exist other causes of excess iron accumulation, which have to be considered before haemochromatosis is diagnosed.
- African iron overload, formerly known as Bantu siderosis, was first observed among people of African descent in Southern Africa. Originally, this was blamed on ungalvanised barrels used to store home-made beer, which led to increased oxidation and increased iron levels in the beer. Further investigation has shown that only some people drinking this sort of beer get an iron overload syndrome, and that a similar syndrome occurred in people of African descent who have had no contact with this kind of beer ("e.g.," African Americans). This led investigators to the discovery of a gene polymorphism in the gene for ferroportin which predisposes some people of African descent to iron overload.
- Transfusion haemosiderosis is the accumulation of iron, mainly in the liver, in patients who receive frequent blood transfusions (such as those with thalassaemia).
- Dyserythropoeisis, also known as myelodysplastic syndrome, is a disorder in the production of red blood cells. This leads to increased iron recycling from the bone marrow and accumulation in the liver.
First degree relatives of those with primary haemochromatosis should be screened to determine if they are a carrier or if they could develop the disease. This can allow preventive measures to be taken.
Screening the general population is not recommended.
MRI-based testing is a non-invasive and accurate alternative to measure liver iron concentrations.
There are several methods available for diagnosing and monitoring iron loading including:
- Serum ferritin: In males and postmenopausal females, a serum ferritin value of over 300 ng/mL (670 pmol/L) indicates iron overload. In premenopausal females, a serum ferritin value of over 150 or 200 ng/mL (330 or 440 pmol/L) indicates iron overload.
- Liver biopsy
- HFE
- MRI
Serum ferritin testing is a low-cost, readily available, and minimally invasive method for assessing body iron stores. However, the major problem with using it as an indicator of iron overload is that it can be elevated in a range of other medical conditions unrelated to iron levels including infection, inflammation, fever, liver disease, kidney disease, and cancer. Also, total iron binding capacity may be low, but can also be normal.
The standard of practice in diagnosis of haemochromatosis was recently reviewed by Pietrangelo. Positive HFE analysis confirms the clinical diagnosis of haemochromatosis in asymptomatic individuals with blood tests showing increased iron stores, or for predictive testing of individuals with a family history of haemochromatosis. The alleles evaluated by HFE gene analysis are evident in ~80% of patients with haemochromatosis; a negative report for HFE gene does not rule out haemochromatosis. In a patient with negative HFE gene testing, elevated iron status for no other obvious reason, and family history of liver disease, additional evaluation of liver iron concentration is indicated. In this case, diagnosis of haemochromatosis is based on biochemical analysis and histologic examination of a liver biopsy. Assessment of the hepatic iron index (HII) is considered the "gold standard" for diagnosis of haemochromatosis.
Magnetic resonance imaging (MRI) is emerging as a noninvasive alternative to accurately estimate iron deposition levels in the liver as well as heart, joints, and pituitary gland.
The level of albumin protein produced by microalbuminuria can be detected by special albumin-specific urine dipsticks, which have a lower detection threshold than standard urine dipsticks. A microalbumin urine test determines the presence of the albumin in urine. In a properly functioning body, albumin is not normally present in urine because it is retained in the bloodstream by the kidneys.
Microalbuminuria can be diagnosed from a 24-hour urine collection (between 30–300 mg/24 hours) or, more commonly, from elevated concentration in a spot sample (20 to 200 mg/L). Both must be measured on at least two of three measurements over a two- to three-month period.
An albumin level above the upper limit values is called "macroalbuminuria", or sometimes just albuminuria. Sometimes, the upper limit value is given as one less (such as 300 being given as 299) to mark that the higher value (here 300) is defined as macroalbuminuria.
To compensate for variations in urine concentration in spot-check samples, it is helpful to compare the amount of albumin in the sample against its concentration of creatinine. This is termed the albumin/creatinine ratio (ACR) and microalbuminuria is defined as ACR ≥3.5 mg/mmol (female) or ≥2.5 mg/mmol (male), or, with both substances measured by mass, as an ACR between 30 and 300 µg albumin/mg creatinine.
For the diagnosis of microalbuminuria, care must be taken when collecting sample for the urine ACR. An early morning sample is preferred. The patient should refrain from heavy exercises 24 hours before the test. A repeat test should be done 3 to 6 months after the first positive test for microalbuminuria. Lastly, the test is inaccurate in a person with too much or too little muscle mass. This is due to the variation in creatinine level which is produced by the muscle.
Diagnosis of TNDM and PNDM
The diagnostic evaluations are based upon current literature and research available on NDM. The following evaluation factors are: patients with TNDM are more likely to have intrauterine growth retardation and less likely to develop ketoacidosis than patients with PNDM. TNDM patients are younger at the age of diagnosis of diabetes and have lower insulin requirements, an overlap occurs between the two groups, therefore TNDM cannot be distinguished from PNDM based clinical feature. An early onset of diabetes mellitus is unrelated to autoimmunity in most cases, relapse of diabetes is common with TNDM, and extensive follow ups are important. In addition, molecular analysis of chromosomes 6 defects, KCNJ11 and ABCC8 genes (encoding Kir6.2 and SUR1) provide a way to identify PNDM in the infant stages. Approximately,50% of PNDM are associated with the potassium channel defects which are essential consequences when changing patients from insulin therapy to sulfonylureas.
TNDM Diagnosis associated with Chromosome 6q24 Mutations
The uniparental disomy of the chromosome can be used as diagnostic method provide proof by the analysis of polymorphic markers is present on Chromosome 6. Meiotic segregation of the chromosome can be distinguished by comparing allele profiles of polymorphic makers in the child to the child's parents' genome. Normally, a total uniparental disomy of the chromosome 6 is evidenced, but partial one can be identified. Therefore, genetic markers that are close to the region of interest in chromosome 6q24 can be selected. Chromosome duplication can found by that technique also.
Medical Professionals of NDM
- Physician
- Endocrinologist
- Geneticist Counselor
Diagnostic Test of NDM
- "Fasting plasma glucose test": measures an diabetic's blood glucose after he or she has gone 8 hours without eat. This test is used to detect diabetes or pre-diabetes
- "Oral glucose tolerance test"- measures an individual's blood glucose after he or she have gone at least 8 hours without eating and two hours after the diabetic individual have drunk a glucose-containing beverage. This test can be used to diagnose diabetes or pre-diabetes
- "Random plasma glucose test"-the doctor checks one's blood glucose without regard to when an individual may have ate his or her last meal. This test, along with an evaluation of symptoms, are used to diagnose diabetes but not pre-diabetes.
Genetic Testing of NDM
- "Uniparental Disomy Test:"
Samples from fetus or child and both parents are needed for analysis. Chromosome of interest must be specified on request form. For prenatal samples (only): if the amniotic fluid (non-confluent culture cells) are provided. Amniotic fluid is added and charged separately. Also, if chorionic villus sample is provided, a genetic test will be added and charged separately. Microsatellites markers and polymerase chain reaction are used on the chromosomes of interest to test the DNA of the parent and child to identify the presence of uni"parental disomy""."
- Intrauterine Growth Restriction
"Apgar score is" a test given after birth to test the baby's physical condition and evaluate if special medical care is needed.
Research for designing therapeutic trials is ongoing via the Washington University Wolfram Study Group, supported by The Ellie White Foundation for Rare Genetic Disorders and The Jack and J.T. Snow Scientific Research Foundation for Wolfram research.
The first symptom is typically diabetes mellitus, which is usually diagnosed around the age of 6. The next symptom to appear is often optic atrophy, the wasting of optic nerves, around the age of 11. The first signs of this are loss of colour vision and peripheral vision. The condition worsens over time, and people with optic atrophy are usually blind within 8 years of the first symptoms. Life expectancy of people suffering from this syndrome is about 30 years.
There are no approved treatments for canine pancreatitis. Treatment for this disease is supportive, and may require hospitialization to attend to the dog's nutritional and fluid needs, pain management, and addressing any other disease processes (infection, diabetes, etc.) while letting the pancreas heal on its own. Treatment often involves "resting" the pancreas for a short period of time by nil per os/nothing per os (NPO)/nil by mouth (NBM), in which the patient receives no food or fluids by mouth, but is fed and hydrated by intravenous fluids and a feeding tube. Dehydration is also managed by the use of fluid therapy. However, a specialist from Texas A&M University has stated "There is no evidence whatsoever that withholding food has any beneficial effect." Other specialists have agreed with his opinion.
Canine pancreatitis is complex, often limiting the ability to approach the disease.
A low fat diet is indicated. The use of drugs which are known to have an association with pancreatitis should be avoided. Some patients benefit from the use of pancreatic enzymes on a supplemental basis. One study indicated that 57 percent of dogs, who were followed for six months after an acute pancreatitis attack, either continued to exhibit inflammation of the organ or had decreased acinar cell function, even though they had no pancreatitis symptoms.
Mauriac syndrome is a rare complication of diabetes mellitus type 1 characterized by extreme hepatomegaly due to glycogen deposition, along with growth failure and delayed puberty. It occurs in children and adolescents with type 1 diabetes as a result of abnormally high blood sugar levels and the symptoms tend to rectify with attainment of normal blood sugar levels. Abnormally high blood sugar levels are relatively common among patients with type I diabetes, but Mauriac syndrome is rare suggesting that a factor affecting glycogen metabolism in addition to the high level of blood sugar is necessary to cause the syndrome. A study of an adolescent boy with severe Mauriac syndrome found a mutation in PHKG2 which is the catalytic subunit of glycogen phosphorylase kinase (PhK). PhK is a large enzyme complex responsible for the activation of glycogen phosphorylase, the first enzyme in the pathway of glycogen metabolism. Expression of the mutant PHKG2 in a human liver cell line inhibited the enzyme activity of the PhK complex and increased glycogen levels. The mother of the boy with Mauriac syndrome possessed the mutant PHKG2, but did not have diabetes or a clinically detectable enlarged liver. The father of the boy had type 1 diabetes with abnormally high blood sugar levels and the size of his liver and his growth were normal. The study suggests that a mutant enzyme of glycogen metabolism in addition to an abnormally high blood glucose level is necessary to cause Mauriac syndrome.
Opinions differ about optimal screening and diagnostic measures, in part due to differences in population risks, cost-effectiveness considerations, and lack of an evidence base to support large national screening programs. The most elaborate regimen entails a random blood glucose test during a booking visit, a screening glucose challenge test around 24–28 weeks' gestation, followed by an OGTT if the tests are outside normal limits. If there is a high suspicion, a woman may be tested earlier.
In the United States, most obstetricians prefer universal screening with a screening glucose challenge test. In the United Kingdom, obstetric units often rely on risk factors and a random blood glucose test. The American Diabetes Association and the Society of Obstetricians and Gynaecologists of Canada recommend routine screening unless the woman is low risk (this means the woman must be younger than 25 years and have a body mass index less than 27, with no personal, ethnic or family risk factors) The Canadian Diabetes Association and the American College of Obstetricians and Gynecologists recommend universal screening. The U.S. Preventive Services Task Force found there is insufficient evidence to recommend for or against routine screening.
Some pregnant women and careproviders choose to forgo routine screening due to the absence of risk factors, however this is not advised due to the large proportion of women who develop gestational diabetes despite having no risk factors present and the dangers to the mother and baby if gestational diabetes remains untreated.
Various strategies have been proposed to prevent the development of metabolic syndrome. These include increased physical activity (such as walking 30 minutes every day), and a healthy, reduced calorie diet. Many studies support the value of a healthy lifestyle as above. However, one study stated these potentially beneficial measures are effective in only a minority of people, primarily due to a lack of compliance with lifestyle and diet changes. The International Obesity Taskforce states that interventions on a sociopolitical level are required to reduce development of the metabolic syndrome in populations.
The Caerphilly Heart Disease Study followed 2,375 male subjects over 20 years and suggested the daily intake of a pint (~568 ml) of milk or equivalent dairy products more than halved the risk of metabolic syndrome. Some subsequent studies support the authors' findings, while others dispute them. A systematic review of four randomized controlled trials found that a paleolithic nutritional pattern improved three of five measurable components of the metabolic syndrome in participants with at least one of the components.
Causes of NDM
PNDM and TNDM are inherited genetically from the mother or father of the infant. Different genetic inheritance or genetic mutations can lead to different diagnosis of NDM (Permanent or Transient Neonatal Diabetes Mellitus). The following are different types of inheritance or mutations:
- "Autosomal Dominant": Every cell has two copies of each gene-one gen coming from the mother and one coming from the father. Autosomal dominant inheritance pattern is defined as a mutation that occurs in only one copy of the gene. A parent with the mutation can pass on a copy of the gene and a parent with the mutation can pass on a copy of their working gene (or a copy of their damaged gene). In an autosomal dominant inheritance, a child who has a parent with the mutation has a 50% possibility of inheriting the mutation.
- "Autosomal Recessive" -Autosomal recessive-Generally, every cells have two copies of each gene-one gene is inherited from the mother and one gene is inherited from the father. Autosomal recessive inheritance pattern is defined as a mutation present in both copies if the gene in order for a person to be affected and each parent much pass on a mutated gene for a child to be affected. However, if an infant or child has only one copy, he or she are a carrier of the mutation. If moth parents are carriers of the recessive gene mutation, each child have a 25% chance of inheriting the gene.
- "Spontaneous": A new mutation or change occurs within the gene.
- "X-linked:" When a trait or disease happens in a person who has inherited a mutated gene on the X chromosome (one of the sex chromosome).
Prevention: There are no current prevention methods, because TNDM or PNDM are inherited genetically.
Cystic fibrosis-related diabetes (CFRD) is diabetes specifically caused by cystic fibrosis, a genetic condition. Cystic fibrosis related diabetes mellitus (CFRD) develops with age, and the median age at diagnosis is 21 years.
There is confusion as to whether, in 2004, the AHA/NHLBI intended to create another set of guidelines or simply update the NCEP ATP III definition.
- Elevated waist circumference:
- Men — greater than 40 inches (102 cm)
- Women — greater than 35 inches (88 cm)
- Elevated triglycerides: Equal to or greater than 150 mg/dL (1.7 mmol/L)
- Reduced HDL ("good") cholesterol:
- Men — Less than 40 mg/dL (1.03 mmol/L)
- Women — Less than 50 mg/dL (1.29 mmol/L)
- Elevated blood pressure: Equal to or greater than 130/85 mm Hg or use of medication for hypertension
- Elevated fasting glucose: Equal to or greater than 100 mg/dL (5.6 mmol/L) or use of medication for hyperglycemia
Another measure of insulin resistance is the modified insulin suppression test developed by Gerald Reaven at Stanford University. The test correlates well with the euglycemic clamp, with less operator-dependent error. This test has been used to advance the large body of research relating to the metabolic syndrome.
Patients initially receive 25 μg of octreotide (Sandostatin) in 5 mL of normal saline over 3 to 5 minutes via intravenous infusion (IV) as an initial bolus, and then, are infused continuously with an intravenous infusion of somatostatin (0.27 μg/m/min) to suppress endogenous insulin and glucose secretion. Next, insulin and 20% glucose are infused at rates of 32 and 267 mg/m/min, respectively. Blood glucose is checked at zero, 30, 60, 90, and 120 minutes, and thereafter, every 10 minutes for the last half-hour of the test. These last four values are averaged to determine the steady-state plasma glucose level (SSPG). Subjects with an SSPG greater than 150 mg/dL are considered to be insulin-resistant.
Given the complicated nature of the "clamp" technique (and the potential dangers of hypoglycemia in some patients), alternatives have been sought to simplify the measurement of insulin resistance. The first was the Homeostatic Model Assessment (HOMA), and a more recent method is the Quantitative insulin sensitivity check index (QUICKI). Both employ fasting insulin and glucose levels to calculate insulin resistance, and both correlate reasonably with the results of clamping studies. Wallace "et al." point out that QUICKI is the logarithm of the value from one of the HOMA equations.
Ketones in the urine or blood, as detected by urine strips or a blood ketone testing meter, may indicate the beginning of diabetic ketoacidosis (DKA), a dangerous and often quickly fatal condition caused by high glucose levels (hyperglycemia) and low insulin levels combined with certain other systemic stresses. DKA can be arrested if caught quickly.
Ketones are produced by the liver as part of fat metabolism and are normally not found in sufficient quantity to be measured in the urine or blood of non-diabetics or well-controlled diabetics. The body normally uses glucose as its fuel and is able to do so with sufficient insulin levels. When glucose is not available as an energy source because of untreated or poorly treated diabetes and some other unrelated medical conditions, it begins to use fat for energy instead. The result of the body turning to using fat instead of glucose for energy means ketone production that is measurable when testing either urine or blood for them.
Ketone problems that are more serious than the "trace or slight" range need immediate medical attention; they cannot be treated at home. Veterinary care for ketosis/ketoacidosis can involve intravenous (IV) fluids to counter dehydration, when necessary, to replace depleted electrolytes, intravenous or intramuscular short-acting insulin to lower blood glucose levels, and measured amounts of glucose or force feeding, to bring the metabolism back to using glucose instead of fat as its source of energy.
When testing urine for ketones, the sample needs to be as fresh as possible. Ketones evaporate quickly, so there is a chance of getting a false negative test result if testing older urine. The urine testing strip bottle has instructions and color charts to illustrate how the color on the strip will change given the level of ketones or glucose in the urine over 15 (ketones–Ketostix) or 30 (glucose–Ketodiastix) seconds. Reading the colors at those time intervals is important because the colors will continue to darken and a later reading will be an incorrect result. Timing with a clock or watch second hand instead of counting is more accurate.
At present, there is only one glucometer available for home use that tests blood for ketones using special strips for that purpose–Abbott's Precision Xtra. This meter is known as Precision, Optium, or Xceed outside of the US. The blood ketone test strips are very expensive; prices start at about US$50 for ten strips. It is most likely urine test strips–either ones that test only for ketones or ones that test for both glucose and ketones in urine would be used. The table above is a guide to when ketones may be present.
No major organization recommends universal screening for diabetes as there is no evidence that such a program improve outcomes. Screening is recommended by the United States Preventive Services Task Force (USPSTF) in adults without symptoms whose blood pressure is greater than 135/80 mmHg. For those whose blood pressure is less, the evidence is insufficient to recommend for or against screening. There is no evidence that it changes the risk of death in this group of people. They also recommend screening among those who are overweight and between the ages of 40 and 70.
The World Health Organization recommends testing those groups at high risk and in 2014 the USPSTF is considering a similar recommendation. High-risk groups in the United States include: those over 45 years old; those with a first degree relative with diabetes; some ethnic groups, including Hispanics, African-Americans, and Native-Americans; a history of gestational diabetes; polycystic ovary syndrome; excess weight; and conditions associated with metabolic syndrome. The American Diabetes Association recommends screening those who have a BMI over 25 (in people of Asian descent screening is recommended for a BMI over 23).
The use of an inexpensive glucometer and blood glucose testing at home can help avoid dangerous insulin overdoses and can provide a better picture of how well the condition is managed.
A 2003 study of canine diabetes caregivers who were new to testing blood glucose at home found 85% of them were able to both succeed at testing and to continue it on a long-term basis. Using only one blood glucose reading as the reason for an insulin dose increase is to be avoided; while the results may be higher than desired, further information, such as the lowest blood glucose reading or nadir, should be available to prevent possible hypoglycemia.
Urine strips are not recommended to be used as the sole factor for insulin adjustments as they are not accurate enough. Urine glucose testing strips have a negative result until the renal threshold of 10 mmol/L or 180 mg/dL is reached or exceeded for a period of time. The range of negative reading values is quite wide-covering normal or close to normal blood glucose values with no danger of hypoglycemia (euglycemia) to low blood glucose values (hypoglycemia) where treatment would be necessary. Because urine is normally retained in the bladder for a number of hours, the results of urine testing are not an accurate measurement of the levels of glucose in the bloodstream at the time of testing.
Glucometers made for humans are generally accurate using canine and feline blood except when reading lower ranges of blood glucose (<80 mg/dL), (<4.44 mmol/L). It is at this point where the size difference in human vs animal red blood cells can create inaccurate readings. Glucometers for humans were successfully used with pets long before animal-oriented meters were produced. A 2009 study directly compared readings from both types of glucometers to those of a chemistry analyzer. Neither glucometer's readings exactly matched those of the analyzer, but the differences of both were not clinically significant when compared to analyzer results. All glucometer readings need to be compared to same sample laboratory values to determine accuracy.
Women with GDM may have high glucose levels in their urine (glucosuria). Although dipstick testing is widely practiced, it performs poorly, and discontinuing routine dipstick testing has not been shown to cause underdiagnosis where universal screening is performed. Increased glomerular filtration rates during pregnancy contribute to some 50% of women having glucose in their urine on dipstick tests at some point during their pregnancy. The sensitivity of glucosuria for GDM in the first 2 trimesters is only around 10% and the positive predictive value is around 20%.
Higher dietary intake of animal protein, animal fat, and cholesterol may increase risk for microalbuminuria, and generally, diets higher in fruits, vegetables, and whole grains but lower in meat and sweets may be protective against kidney function decline.
Renal cysts and diabetes syndrome (RCAD), also known as MODY 5, is a form of maturity onset diabetes of the young.
HNF1β-related MODY is one of the less common forms of MODY, with some distinctive clinical features, including atrophy of the pancreas and several forms of renal disease. HNF1β, also known as transcription factor 2 (TCF2), is involved in early stages of embryonic development of several organs, including the pancreas, where it contributes to differentiation of pancreatic endocrine Ngn3 cell progenitors from non-endocrine embryonic duct cells. The gene is on chromosome 17q.
The degree of insulin deficiency is variable. Diabetes can develop from infancy through middle adult life, and some family members who carry the gene remain free of diabetes into later adult life. Most of those who develop diabetes show atrophy of the entire pancreas, with mild or subclincal deficiency of exocrine as well as endocrine function.
The non-pancreatic manifestations are even more variable. Kidney and genitourinary malformation and diseases may occur, but inconsistently even within a family, and the specific conditions include a range of apparently unrelated anomalies and processes. The most common genitourinary condition is cystic kidney disease, but there are many varieties even of this. Renal effects begin with structural alterations (small kidneys, renal cysts, anomalies of the renal pelvis and calices), but a significant number develop slowly progressive renal failure associated with chronic cystic disease of the kidneys. In some cases, renal cysts may be detected in utero. Kidney disease may develop before or after hyperglycemia, and a significant number of people with MODY5 are discovered in renal clinics.
With or without kidney disease, some people with forms of HNF1β have had various minor or major anomalies of the reproductive system. Male defects have included epididymal cysts, agenesis of the vas deferens, or infertility due to abnormal spermatozoa. Affected women have been found to have vaginal agenesis, hypoplastic, or bicornuate uterus.
Liver enzyme elevations are common, but clinically significant liver disease is not. Hyperuricaemia and early onset gout have occurred.
MODY 4 is a form of maturity onset diabetes of the young.
MODY 4 arises from mutations of the PDX1 homeobox gene on chromosome 13. Pdx-1 is a transcription factor vital to the development of the embryonic pancreas. Even in adults it continues to play a role in the regulation and expression of genes for insulin, GLUT2, glucokinase, and somatostatin.
MODY 4 is so rare that only a single family has been well-studied. A child born with pancreatic agenesis (absence of the pancreas) was found to be homozygous for Pdx-1 mutations. A number of older relatives who were heterozygous had mild hyperglycemia or diabetes. None were severely insulin-deficient and all were controlled with either diet or oral hypoglycemic agents.