Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Evidence does not support the use of preventative antibiotics regardless of the presence of a cerebral spinal fluid leak.
A bone fracture may be diagnosed based on the history given and the physical examination performed. Radiographic imaging often is performed to confirm the diagnosis. Under certain circumstances, radiographic examination of the nearby joints is indicated in order to exclude dislocations and fracture-dislocations. In situations where projectional radiography alone is insufficient, Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) may be indicated.
Non-displaced fractures usually heal without intervention. Patients with basilar skull fractures are especially likely to get meningitis. Unfortunately, the efficacy of prophylactic antibiotics in these cases is uncertain.
A compound elevated skull fracture is a rare type of skull fracture where the fractured bone is elevated above the intact outer table of the skull. This type of skull fracture is always compound in nature. It can be caused during an assault with a weapon where the initial blow penetrates the skull and the underlying meninges and, on withdrawal, the weapon lifts the fractured portion of the skull outward. It can also be caused the skull rotating while being struck in a case of blunt force trauma, the skull rotating while striking an inanimate object as in a fall, or it may occur during transfer of a patient after an initial compound head injury.
The basic method to check for a clavicle fracture is by an X-ray of the clavicle to determine the fracture type and extent of injury. In former times, X-rays were taken of both clavicle bones for comparison purposes. Due to the curved shape in a tilted plane X-rays are typically oriented with ~15° upwards facing tilt from the front. In more severe cases, a computerized tomography (CT) or magnetic resonance imaging (MRI) scan is taken.
However, the standard method of diagnosis through ultrasound imaging performed in the emergency room may be equally accurate in children.
A fracture in conjunction with an overlying laceration that tears the epidermis and the meninges—or runs through the paranasal sinuses and the middle ear structures, putting the outside environment in contact with the cranial cavity—is a compound fracture.
Compound fractures may either be clean or contaminated. Intracranial air (pneumocephalus) may occur in compound skull fractures.
The most serious complication of compound skull fractures is infection. Increased risk factors for infection include visible contamination, meningeal tear, loose bone fragments and presenting for treatment more than eight hours after initial injury.
Typically, radiographs are taken of the hip from the front (AP view), and side (lateral view). Frog leg views are to be avoided, as they may cause severe pain and further displace the fracture. In situations where a hip fracture is suspected but not obvious on x-ray, an MRI is the next test of choice. If an MRI is not available or the patient can not be placed into the scanner a CT may be used as a substitute. MRI sensitivity for radiographically occult fracture is greater than CT. Bone scan is another useful alternative however substantial drawbacks include decreased sensitivity, early false negative results, and decreased conspicuity of findings due to age related metabolic changes in the elderly.
As the patients most often require an operation, full pre-operative general investigation is required. This would normally include blood tests, ECG and chest x-ray.
When a child experiences a fracture, he or she will have pain and will not be able to easily move the fractured area. A doctor or emergency care should be contacted immediately. In some cases even though the child will not have pain and will still be able to move, medical help must be sought out immediately. To decrease the pain, bleeding, and movement a physician will put a splint on the fractured area. Treatment for a fracture follows a simple rule: the bones have to be aligned correctly and prevented from moving out of place until the bones are healed. The specific treatment applied depends on how severe the fracture is, if it’s an open or closed fracture, and the specific bone involved in the fracture (a hip fracture is treated differently from a forearm fracture for example)
Different treatments for different fractures:
The general treatments for common fractures are as follows:
X-rays of the affected hip usually make the diagnosis obvious; AP (anteroposterior) and lateral views should be obtained.
Trochanteric fractures are subdivided into either intertrochanteric (between the greater and lesser trochanter) or pertrochanteric (through the trochanters) by the Müller AO Classification of fractures. Practically, the difference between these types is minor. The terms are often used synonymously. An "isolated trochanteric fracture" involves one of the trochanters without going through the anatomical axis of the femur, and may occur in young individuals due to forceful muscle contraction. Yet, an "isolated trochanteric fracture" may not be regarded as a true hip fracture because it is not cross-sectional.
Definitive diagnosis of humerus fractures is typically made through radiographic imaging. For proximal fractures, X-rays can be taken from a scapular anteroposterior (AP) view, which takes an image of the front of the shoulder region from an angle, a scapular Y view, which takes an image of the back of the shoulder region from an angle, and an axillar lateral view, which has the patient lie on his or her back, lift the bottom half of the arm up to the side, and have an image taken of the axilla region underneath the shoulder. Fractures of the humerus shaft are usually correctly identified with radiographic images taken from the AP and lateral viewpoints. Damage to the radial nerve from a shaft fracture can be identified by an inability to bend the hand backwards or by decreased sensation in the back of the hand. Images of the distal region are often of poor quality due to the patient being unable to extend the elbow because of pain. If a severe distal fracture is supected, then a computed tomography (CT) scan can provide greater detail of the fracture. Nondisplaced distal fractures may not be directly visible; they may only be visible due to fat being displaced because of internal bleeding in the elbow.
Children in general are at greater risk because of their high activity levels. Children that have risk-prone behaviors are at even greater risk.
X-ray of the affected wrist is required if a fracture is suspected. Anteroposterior (AP), lateral, and oblique views can be used together to describe the fracture. X-ray of the uninjured wrist should also be taken to determine if there are any normal anatomic variations. Investigation of a potential distal radial fracture includes assessment of the angle of the joint surface on lateral X-ray (volar/dorsal tilt), the loss of length of the radius from the collapse of the fracture (radial length), and congruency of the distal radioulnar joint (DRUJ). Displacement of the articular surface is the most important factor affecting prognosis and treatment. CT scan is often performed to further investigate the articular anatomy of the fracture, especially if surgery is considered. MRI can be considered to evaluate for soft tissue injuries, including damage to the TFCC and the interosseous ligaments.
Computed tomography is the most sensitive and specific of the imaging techniques. The facial bones can be visualized as slices through the skeletal in either the axial, coronal or sagittal planes. Images can be reconstructed into a 3-dimensional view, to give a better sense of the displacement of various fragments. 3D reconstruction, however, can mask smaller fractures owing to volume averaging, scatter artifact and surrounding structures simply blocking the view of underlying areas.
Research has shown that panoramic radiography is similar to computed tomography in its diagnostic accuracy for mandible fractures and both are more accurate than plain film radiograph. The indications to use CT for mandible fracture vary by region, but it does not seem to add to diagnosis or treatment planning except for comminuted or avulsive type fractures, although, there is better clinician agreement on the location and absence of fractures with CT compared to panoramic radiography.
Diagnosis may be evident clinically when the distal radius is deformed but should be confirmed by X-ray.
The differential diagnosis includes scaphoid fractures and wrist dislocations, which can also co-exist with a distal radius fracture. Occasionally, fractures may not be seen on X-rays immediately after the injury. Delayed X-rays, X-ray computed tomography (CT scan), or Magnetic resonance imaging (MRI) will confirm the diagnosis.
Fractures of the humerus are classified based on the location of the fracture and then by the type of fracture. There are three locations that humerus fractures occur: at the proximal location, which is the top of the humerus near the shoulder, in the middle, which is at the shaft of the humerus, and the distal location, which is the bottom of the humerus near the elbow. Proximal fractures are classified into one of four types of fractures based on the displacement of the greater tubercle, the lesser tubercle, the surgical neck, and the anatomical neck, which are the four parts of the proximal humerus, with fracture displacement being defined as at least one centimeter of separation or an angulation greater than 45 degrees. One-part fractures involve no displacement of any parts of the humerus, two-part fractures have one part displaced relative to the other three; three-part fractures have two displaced fragments, and four-part fractures have all fragments displaced from each other. Fractures of the humerus shaft are subdivided into transverse fractures, spiral fractures, "butterfly" fractures, which are a combination of transverse and spiral fractures, and pathological fractures, which are fractures caused by medical conditions. Distal fractures are split between supracondylar fractures, which are transverse fractures above the two condyles at the bottom of the humerus, and intercondylar fractures, which involve a T- or Y-shaped fracture that splits the condyles.
Most fractures of the scapula can be seen on a chest X-ray; however, they may be missed during examination of the film. Serious associated injuries may distract from the scapular injury, and diagnosis is often delayed. Computed tomography may also be used. Scapular fractures can be detected in the standard chest and shoulder radiographs that are given to patients who have suffered significant physical trauma, but much of the scapula is hidden by the ribs on standard chest X-rays. Therefore, if scapular injury is suspected, more specific images of the scapular area can be taken.
X-ray is seldom helpful, but a CT scan and an MRI study may help in diagnosis.
Bone scans are positive early on. Dual energy X-ray absorptiometry is also helpful to rule out comorbid osteoporosis.
Healing time varies based on age, health, complexity, and location of the break, as well as the bone displacement. For adults, a minimum of 2–6 weeks of sling immobilization is normally employed to allow initial bone and soft tissue healing; teenagers require slightly less, while children can often achieve the same level in two weeks. During this period, patients may remove the sling to practice passive pendulum range of motion exercises to reduce atrophy in the elbow and shoulder, but they are minimized to 15–20° off vertical. Depending on the severity of fracture, a person can begin to use the arm if comfortable with movement and no pain results. The final goal is to be able to have full range of motion with no pain; therefore, if any pain occurs, allowing for more recovery time is best. Depending on severity of the fracture, athletes involved in contact sports may need a longer period of rest to heal to avoid refracturing bone. A person should be able to return unrestricted to any sports or work by 3 months after the injury.
There are various classification systems of mandibular fractures in use.
A Cochrane review of low-intensity pulsed ultrasound to speed healing in newly broken bones found insufficient evidence to justify routine use. Other reviews have found tentative evidence of benefit. It may be an alternative to surgery for established nonunions.
Vitamin D supplements combined with additional calcium marginally reduces the risk of hip fractures and other types of fracture in older adults; however, vitamin D supplementation alone did not reduce the risk of fractures.
Diagnosis is confirmed by x-ray imaging. Displaced fractures are readily apparent. A non-displaced fracture can be difficult to identify and a fracture line may not be visible on the X-rays. However, the presence of a joint effusion is highly suggestive of a non-displaced fracture. Bleeding from the fracture expands the joint capsule and is visualized on the lateral view as a darker area anteriorly and posteriorly, and is known as the sail sign. Depending on the child's age, parts of the bone will still be developing and if not yet calcified, will not show up on the X-rays. At times, X-rays of the opposite elbow may be obtained for comparison. There are landmarks on the X-rays that can be used to assess displacement, including the "anterior humeral line", which is a line drawn down along the front of the humerus on the lateral view and it should pass through the middle third of the capitulum of the humerus.
Segond and reverse Segond fractures are characterized by a small avulsion, or "chip", fragment of characteristic size that is best seen on plain radiography in the anterior-posterior plane. The chip of bone may be very difficult to see on the plain x-ray exam, and may be better seen on computed tomography. MRI may be useful for visualization of the associated bone marrow edema of the underlying tibial plateau on fat- saturated T2W and STIR images, as well as the associated findings of ligamentous and/or meniscal injury.
Diagnosis is based on symptom and confirmed with X-rays. In children an MRI may be required.
The use of surgery to treat a Jefferson fracture is somewhat controversial. Non-surgical treatment varies depending on if the fracture is stable or unstable, defined by an intact or broken transverse ligament and degree of fracture of the anterior arch. An intact ligament requires the use of a soft or hard collar, while a ruptured ligament may require traction, a halo or surgery. The use of rigid halos can lead to intracranial infections and are often uncomfortable for individuals wearing them, and may be replaced with a more flexible alternative depending on the stability of the injured bones, but treatment of a stable injury with a halo collar can result in a full recovery. Surgical treatment of a Jefferson fracture involves fusion or fixation of the first three cervical vertebrae; fusion may occur immediately, or later during treatment in cases where non-surgical interventions are unsuccessful. A primary factor in deciding between surgical and non-surgical intervention is the degree of stability as well as the presence of damage to other cervical vertebrae.
Though a serious injury, the long-term consequences of a Jefferson's fracture are uncertain and may not impact longevity or abilities, even if untreated. Conservative treatment with an immobilization device can produce excellent long-term recovery.
Treatment involves pain medication and immobilization at first; later, physical therapy is used. Ice over the affected area may increase comfort. Movement exercises are begun within at least a week of the injury; with these, fractures with little or no displacement heal without problems. Over 90% of scapular fractures are not significantly displaced; therefore, most of these fractures are best managed without surgery. Fractures of the scapular body with displacement may heal with malunion, but even this may not interfere with movement of the affected shoulder. However, displaced fractures in the scapular processes or in the glenoid do interfere with movement in the affected shoulder if they are not realigned properly. Therefore, while most scapular fractures are managed without surgery, surgical reduction is required for fractures in the neck or glenoid; otherwise motion of the shoulder may be impaired.