Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A specific clinical diagnosis of HSV as the cause of dendritic keratitis can usually be made by ophthalmologists and optometrists based on the presence of characteristic clinical features. Diagnostic testing is seldom needed because of its classic clinical features and is not useful in stromal keratitis as there is usually no live virus. Laboratory tests are indicated in complicated cases when the clinical diagnosis is uncertain and in all cases of suspected neonatal herpes infection:
- Corneal smears or impression cytology specimens can be analyzed by culture, antigen detection, or fluorescent antibody testing. Tzanck smear, i.e.Papanicolaou staining of corneal smears, show multinucleated giant cells and intranuclear inclusion bodies, however, the test is low in sensitivity and specificity.
- DNA testing is rapid, sensitive and specific. However, its high cost limits its use to research centers.
- Demonstration of HSV is possible with viral culture.
- Serologic tests may show a rising antibody titer during primary infection but are of no diagnostic assistance during recurrent episodes.
Treatment of herpes of the eye is different based on its presentation: epithelial keratitis is caused by live virus while stromal disease is an immune response and metaherpetic ulcer results from inability of the corneal epithelium to heal:
Diagnosis is done by direct observation under magnified view of slit lamp revealing the ulcer on the cornea. The use of fluorescein stain, which is taken up by exposed corneal stroma and appears green, helps in defining the margins of the corneal ulcer, and can reveal additional details of the surrounding epithelium. Herpes simplex ulcers show a typical dendritic pattern of staining. Rose-Bengal dye is also used for supra-vital staining purposes, but it may be very irritating to the eyes. In descemetoceles, the Descemet's membrane will bulge forward and after staining will appear as a dark circle with a green boundary, because it does not absorb the stain. Doing a corneal scraping and examining under the microscope with stains like Gram's and KOH preparation may reveal the bacteria and fungi respectively. Microbiological culture tests may be necessary to isolate the causative organisms for some cases. Other tests that may be necessary include a Schirmer's test for keratoconjunctivitis sicca and an analysis of facial nerve function for facial nerve paralysis.
The diagnosis is made by an ophthalmologist/optometrist correlating typical history, symptoms and signs. Many times it may be missed and misdiagnosed as bacterial ulcer. A definitive diagnosis is established only after a positive culture report (lactophenol cotton blue, calcoflour medium), typically taking a week, from the corneal scraping. Recent advances have been made in PCR ref 3./immunologic tests which can give a much quicker result.
Cultures are not often taken or needed as most cases resolve either with time or typical antibiotics. Swabs for bacterial culture are necessary if the history and signs suggest bacterial conjunctivitis but there is no response to topical antibiotics. Viral culture may be appropriate in epidemic case clusters.
A patch test is used to identify the causative allergen in the case where conjunctivitis is caused by allergy.
Conjunctival scrapes for cytology can be useful in detecting chlamydial and fungal infections, allergy, and dysplasia, but are rarely done because of the cost and the general lack of laboratory staff experienced in handling ocular specimens. Conjunctival incisional biopsy is occasionally done when granulomatous diseases ("e.g.", sarcoidosis) or dysplasia are suspected.
The cornerstone of diagnosis is an accurate history, and a good clinical examination of the eye, to eliminate traumatic uveitis. Ultrasonography is a useful tool, as it can detect a thickened iris, but only in the hands of an expert.
Classification can be either by cause or by extent of the inflamed area.
Diagnosis of FVR is usually by clinical signs, especially corneal ulceration. Definitive diagnosis can be done by direct immunofluorescence or virus isolation. However, many healthy cats are subclinical carriers of feline herpes virus, so a positive test for FHV-1 does not necessarily indicate that signs of an upper respiratory tract infection are due to FVR. Early in the course of the disease, histological analysis of cells from the tonsils, nasal tissue, or nictitating membrane (third eyelid) may show inclusion bodies (a collection of viral particles) within the nucleus of infected cells.
Prevention of trauma with vegetable / organic matter, particularly in agricultural workers while harvesting can reduce the incidence of fungal keratitis. Wearing of broad protective glasses with side shields is recommended for people at risk for such injuries.
Any potential ocular involvement should be assessed by an ophthalmologist as complications such as episcleritis and uveitis may occur.
NK is diagnosed on the basis of the patient's medical history and a careful examination of the eye and surrounding area.
With regard to the patient's medical history, special attention should be paid to any herpes virus infections and possible surgeries on the cornea, trauma, abuse of anaesthetics or chronic topical treatments, chemical burns or, use of contact lenses. It is also necessary to investigate the possible presence of diabetes or other systemic diseases such as multiple sclerosis.
The clinical examination is usually performed through a series of assessments and tools:
- General examination of cranial nerves, to determine the presence of nerve damage.
- Eye examinations:
1. Complete eye examination: examination of the eyelids, blink rate, presence of inflammatory reactions and secretions, corneal epithelial alterations.
2. Corneal sensitivity test: performed by placing a cotton wad or cotton thread in contact with the corneal surface: this only allows to determine whether corneal sensitivity is normal, reduced or absent; or using an esthesiometer that allows to assess corneal sensitivity.
3. Tear film function test, such as Schirmer's test, and tear film break-up time.
4. Fluorescein eye stain test, which shows any damage to the corneal and conjunctival epithelium
A positive VDRL of Treponema pallidum immobilization test confirms diagnosis of luetic(syphilitic) interstitial keratitis
Anterior uveitis develops in 40–50% of cases with HZO within 2 weeks of onset of the skin rashes. Typical HZO keratitis at least mild iritis, especially if Hutchinson's sign is positive for the presence of vescicles upon the tip of the nose.
Features:
This non-granulomatous iridocyclitis is associated with:
- Small keratic precipitates
- Mild aqueous flare
- Occasionally haemorrhagic hypopion.
HZO uveitis is associated with complications such as iris atrophy and secondary glaucoma are not uncommon. Complicated cataract may develop in the late stages of the disease.
To detect "Acanthamoeba" on a contact lens in a laboratory, the contact lens is placed on a non-nutrient agar saline plate seeded with a gram-negative bacteria such as "E. coli". If "Acanthamoeba" are present, they will reproduce readily and become visible on the plate under 10-20X objective on an inverted microscope. Polymerase chain reaction can also be used to confirm a diagnosis of "Acanthamoeba" keratitis, especially when contact lenses are not involved. "Acanthameoba" is also characterized by a brawny edema and hazy view into the anterior chamber. Late stages of the disease also produces a ring shaped corneal ulcer. Signs and symptoms include severe pain, severe keratitis (similar to stromal herpetic disease), corneal perineuritis, and ring ulcer (late in the disease process).
There is a vaccine for FHV-1 available (ATCvet code: , plus various combination vaccines), but although it limits or weakens the severity of the disease and may reduce viral shedding, it does not prevent infection with FVR. Studies have shown a duration of immunity of this vaccine to be at least three years. The use of serology to demonstrate circulating antibodies to FHV-1 has been shown to have a positive predictive value for indicating protection from this disease.
Treatment depends on the cause of the keratitis. Infectious keratitis can progress rapidly, and generally requires urgent antibacterial, antifungal, or antiviral therapy to eliminate the pathogen. Antibacterial solutions include levofloxacin, gatifloxacin, moxifloxacin, ofloxacin. It is unclear if steroid eye drops are useful or not.
In addition, contact lens wearers are typically advised to discontinue contact lens wear and replace contaminated contact lenses and contact lens cases. (Contaminated lenses and cases should not be discarded as cultures from these can be used to identify the pathogen).
Aciclovir is the mainstay of treatment for HSV keratitis and steroids should be avoided at all costs in this condition. Application of steroids to a dendritic ulcer caused by HSV will result in rapid and significant worsening of the ulcer to form an 'amoeboid' or 'geographic' ulcer, so named because of the ulcer's map like shape.
Proper diagnosis is essential for optimal treatment. Bacterial corneal ulcer require intensive fortified antibiotic therapy to treat the infection. Fungal corneal ulcers require intensive application of topical anti-fungal agents. Viral corneal ulceration caused by herpes virus may respond to antivirals like topical acyclovir ointment instilled at least five times a day. Alongside, supportive therapy like pain medications are given, including topical cycloplegics like atropine or homatropine to dilate the pupil and thereby stop spasms of the ciliary muscle. Superficial ulcers may heal in less than a week. Deep ulcers and descemetoceles may require conjunctival grafts or conjunctival flaps, soft contact lenses, or corneal transplant. Proper nutrition, including protein intake and Vitamin C are usually advised. In cases of Keratomalacia, where the corneal ulceration is due to a deficiency of Vitamin A, supplementation of the Vitamin A by oral or intramuscular route is given. Drugs that are usually contraindicated in corneal ulcer are topical corticosteroids and anesthetics - these should not be used on any type of corneal ulcer because they prevent healing, may lead to superinfection with fungi and other bacteria and will often make the condition much worse.
Horses that suffer from this disease can never be considered cured, although they can be managed by careful use of the therapy described above, and fast detection of new flare-ups. If the disease is not properly treated, it will eventually lead to blindness.
Previous long-standing eye infection which possibly during childhood time recalled as being treated with antibiotic and/or hospitalized over long period of time.
According to the American Optometric Association, the following steps can be taken to prevent "Acanthamoeba" keratitis:
- Always wash and dry your hands before handling contact lenses, ordinary water should never come in contact with your lenses.
- Rub and rinse the surface of the contact lens before storing.
- Use only sterile products recommended by your optometrist to clean and disinfect your lenses. Saline solution and rewetting drops are not designed to disinfect lenses.
- Avoid using tap water to wash or store contact lenses.
- Contact lens solution must be discarded upon opening the case, and fresh solution used each time the lens is placed in the case.
- Replace lenses using your doctor’s prescribed schedule.
- Do not sleep in contact lenses unless prescribed by your doctor and never after swimming.
- Never swap lenses with someone else.
- Never put contact lenses in your mouth.
- See your optometrist regularly for contact lens evaluation.
Although corneal abrasions may be seen with ophthalmoscopes, slit lamp microscopes provide higher magnification which allow for a more thorough evaluation. To aid in viewing, a fluorescein stain that fills in the corneal defect and glows with a cobalt blue-light is generally instilled first.
A careful search should be made for any foreign body, in particular looking under the eyelids. Injury following use of hammers or power-tools should always raise the possibility of a penetrating foreign body into the eye, for which urgent ophthalmology opinion should be sought.
According to Mackie's classification, neurotrophic keratitis can be divided into three stages based on severity:
1. "Stage I:" characterized by alterations of the corneal epithelium, which is dry and opaque, with superficial punctate keratopathy and corneal oedema. Long-lasting neurotrophic keratitis may also cause hyperplasia of the epithelium, stromal scarring and neovascularization of the cornea.
2. "Stage II:" characterized by development of epithelial defects, often in the area near the centre of the cornea.
3. "Stage III:" characterized by ulcers of the cornea accompanied by stromal oedema and/or melting that may result in corneal perforation.
Some infections may scar the cornea to limit vision. Others may result in perforation of the cornea, (an infection inside the eye), or even loss of the eye. With proper medical attention, infections can usually be successfully treated without long-term visual loss.
Intraocular pressure should be measured as part of the routine eye examination.
It is usually only elevated by iridocyclitis or acute-closure glaucoma, but not by relatively benign conditions.
In iritis and traumatic perforating ocular injuries, the intraocular pressure is usually low.
Complications are the exception rather than the rule from simple corneal abrasions. It is important that any foreign body be identified and removed, especially if containing iron as rusting will occur.
Occasionally the healed epithelium may be poorly adherent to the underlying basement membrane in which case it may detach at intervals giving rise to recurrent corneal erosions.