Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Effective management of allergic diseases relies on the ability to make an accurate diagnosis. Allergy testing can help confirm or rule out allergies. Correct diagnosis, counseling, and avoidance advice based on valid allergy test results reduces the incidence of symptoms and need for medications, and improves quality of life. To assess the presence of allergen-specific IgE antibodies, two different methods can be used: a skin prick test, or an allergy blood test. Both methods are recommended, and they have similar diagnostic value.
Skin prick tests and blood tests are equally cost-effective, and health economic evidence shows that both tests were cost-effective compared with no test. Also, early and more accurate diagnoses save cost due to reduced consultations, referrals to secondary care, misdiagnosis, and emergency admissions.
Allergy undergoes dynamic changes over time. Regular allergy testing of relevant allergens provides information on if and how patient management can be changed, in order to improve health and quality of life. Annual testing is often the practice for determining whether allergy to milk, egg, soy, and wheat have been outgrown, and the testing interval is extended to 2–3 years for allergy to peanut, tree nuts, fish, and crustacean shellfish. Results of follow-up testing can guide decision-making regarding whether and when it is safe to introduce or re-introduce allergenic food into the diet.
An allergy blood test is quick and simple, and can be ordered by a licensed health care provider ("e.g.", an allergy specialist), GP, or PED. Unlike skin-prick testing, a blood test can be performed irrespective of age, skin condition, medication, symptom, disease activity, and pregnancy. Adults and children of any age can take an allergy blood test. For babies and very young children, a single needle stick for allergy blood testing is often more gentle than several skin tests.
An allergy blood test is available through most laboratories. A sample of the patient's blood is sent to a laboratory for analysis, and the results are sent back a few days later. Multiple allergens can be detected with a single blood sample. Allergy blood tests are very safe, since the person is not exposed to any allergens during the testing procedure.
The test measures the concentration of specific IgE antibodies in the blood. Quantitative IgE test results increase the possibility of ranking how different substances may affect symptoms. A rule of thumb is that the higher the IgE antibody value, the greater the likelihood of symptoms. Allergens found at low levels that today do not result in symptoms can nevertheless help predict future symptom development. The quantitative allergy blood result can help determine what a patient is allergic to, help predict and follow the disease development, estimate the risk of a severe reaction, and explain cross-reactivity.
A low total IgE level is not adequate to rule out sensitization to commonly inhaled allergens. Statistical methods, such as ROC curves, predictive value calculations, and likelihood ratios have been used to examine the relationship of various testing methods to each other. These methods have shown that patients with a high total IgE have a high probability of allergic sensitization, but further investigation with allergy tests for specific IgE antibodies for a carefully chosen of allergens is often warranted.
Laboratory methods to measure specific IgE antibodies for allergy testing include enzyme-linked immunosorbent assay (ELISA, or EIA), radioallergosorbent test (RAST) and fluorescent enzyme immunoassay (FEIA).
Unlike most food allergies, it may be possible for the alpha-gal allergy to recede with time, as long as the person is not bitten by another tick. The recovery period can take anywhere from eight months to five years. This recovery potential is not confirmed. More research needs to be conducted to determine why some patients seem to recover and some do not.
A traditional skin prick allergy test for allergy to meat may give a false negative answer. Blood tests for IgE response indicating alpha-gal allergy have not been approved by the U.S. Food and Drug Administration (FDA), and must usually be purchased by private individuals, but are available and are in use. Determination of specific IgE to alpha-gal testing is commercially available. The highest sensitivity is observed with skin and basophil activation tests with cetuximab which is, however, limited by its high costs.
Nickel allergy can be confirmed by a properly trained health care provider based on the medical history, physical exam and a painless specialized patch test— when necessary. A significant number of people may self-diagnose, and not contact medical professionals, which could result in massive underreporting of the problem by scientific researchers.
Confirming the diagnosis of Ni-ACD specifically involves inducing the skin to demonstrate a rash where the chemicals are applied (a delayed type hypersensitivity reaction), evidence that the patient is exposed to nickel, and establishing that the reaction and the exposure explain the current rash/symptoms under question. The patch test plays a significant role in diagnosing ACD.
The patch test evokes a delayed, Type IV hypersensitivity reaction, which is a cell-mediated, antibody independent, immune response. Patch testing is the "gold standard" diagnostic tool for Ni-ACD. In this sense, a positive patch test to nickel establishes that the subject has been previously exposed and is therefore sensitized to nickel. It does not necessarily indicate that the patch reaction is the cause of the current clinical disease. A negative test demonstrates that the patient is sub-threshold, either minimally or not sensitized. Cumulatively, clinical reasoning and a patch test help determine if nickel could be the cause of a current dermatitis reaction.
Urinary cystyl-leukotriene or urinary LTE4 can be used after a supervised challenge with aspirin. In aspirin sensitivity, no change in N-methylhistamine is observed; while LTE4 levels are increased. This test however lacks sensitivity and has a 25 percent false negative rate among affected persons.
Drug eruptions are diagnosed mainly from the medical history and clinical examination. However, they can mimic a wide range of other conditions, thus delaying diagnosis (for example, in drug-induced lupus erythematosus, or the acne-like rash caused by erlotinib). A skin biopsy, blood tests or immunological tests can also be useful.
Drug reactions have characteristic timing. The typical amount of time it takes for a rash to appear after exposure to a drug can help categorize the type of reaction. For example, Acute generalized exanthematous pustulosis usually occurs within 4 days of starting the culprit drug. Drug Reaction with Eosinophilia and Systemic Symptoms usually occurs between 15 and 40 days after exposure. Toxic epidermal necrolysis and Stevens-Johnson syndrome typically occur 7–21 days after exposure. Anaphylaxis occurs within minutes. Simple exanthematous eruptions occur between 4 and 14 days after exposure.
TEN and SJS are severe cutaneous drug reactions that involve the skin and mucous membranes. To accurately diagnose this condition, a detailed drug history is crucial. Often, several drugs may be causative and allergy testing may be helpful. Sulfa drugs are well-known to induce TEN or SJS in certain people. For example, HIV patients have an increased incidence of SJS or TEN compared to the general population and have been found to express low levels of the drug metabolizing enzyme responsible for detoxifying sulfa drugs. Genetics plays an important role in predisposing certain populations to TEN and SJS. As such, there are some FDA recommended genetic screening tests available for certain drugs and ethnic populations to prevent the occurrence of a drug eruption. The most well known example is carbamezepine (an anti-convulsant used to treat seizures) hypersensitivity associated with the presence of HLA-B*5801 genetic allele in Asian populations.
DIHS is a delayed onset drug eruption, often occurring a few weeks to 3 months after initiation of a drug. Interestingly, worsening of systemic symptoms occurs 3-4 days after cessation of the offending drug. There are genetic risk alleles that are predictive of the development of DIHS for particular drugs and ethnic populations. The most important of which is abacavir (an anti-viral used in the treatment of HIV) hypersensitivity associated with the presence of the HLA-B*5701 allele in European and African population in the United States and Australians.
AGEP is often caused by antimicrobial, anti-fungal or antimalarial drugs. Diagnosis is often carried out by patch testing. This testing should be performed within one month after resolution of the rash and patch test results are interpreted at different time points: 48 hours, 72hours and even later at 96 hours and 120 hours in order to improve the sensitivity.
It is estimated that 2—3 percent of hospitalised patients are affected by a drug eruption, and that serious drug eruptions occur in around 1 in 1000 patients.
Diagnosis is usually based on a medical history, elimination diet, skin prick test, blood tests for food-specific IgE antibodies, or oral food challenge.
- For skin-prick tests, a tiny board with protruding needles is used. The allergens are placed either on the board or directly on the skin. The board is then placed on the skin, to puncture the skin and for the allergens to enter the body. If a hive appears, the person is considered positive for the allergy. This test only works for IgE antibodies. Allergic reactions caused by other antibodies cannot be detected through skin-prick tests.
Skin-prick testing is easy to do and results are available in minutes. Different allergists may use different devices for testing. Some use a "bifurcated needle", which looks like a fork with two prongs. Others use a "multitest", which may look like a small board with several pins sticking out of it. In these tests, a tiny amount of the suspected allergen is put onto the skin or into a testing device, and the device is placed on the skin to prick, or break through, the top layer of skin. This puts a small amount of the allergen under the skin. A hive will form at any spot where the person is allergic. This test generally yields a positive or negative result. It is good for quickly learning if a person is allergic to a particular food or not, because it detects IgE. Skin tests cannot predict if a reaction would occur or what kind of reaction might occur if a person ingests that particular allergen. They can, however, confirm an allergy in light of a patient's history of reactions to a particular food. Non-IgE-mediated allergies cannot be detected by this method.
- Patch testing is used to determine if a specific substance causes allergic inflammation of the skin. It tests for delayed food reactions.
- Blood testing is another way to test for allergies; however, it poses the same disadvantage and only detects IgE allergens and does not work for every possible allergen. Radioallergosorbent testing (RAST) is used to detect IgE antibodies present to a certain allergen. The score taken from the RAST is compared to predictive values, taken from a specific type of RAST. If the score is higher than the predictive values, a great chance the allergy is present in the person exists. One advantage of this test is that it can test many allergens at one time.
A CAP-RAST has greater specificity than RAST; it can show the amount of IgE present to each allergen. Researchers have been able to determine "predictive values" for certain foods, which can be compared to the RAST results. If a person's RAST score is higher than the predictive value for that food, over a 95% chance exists that patients will have an allergic reaction (limited to rash and anaphylaxis reactions) if they ingest that food. Currently, predictive values are available for milk, egg, peanut, fish, soy, and wheat. Blood tests allow for hundreds of allergens to be screened from a single sample, and cover food allergies as well as inhalants. However, non-IgE-mediated allergies cannot be detected by this method. Other widely promoted tests such as the antigen leukocyte cellular antibody test and the food allergy profile are considered unproven methods, the use of which is not advised.
- Food challenges test for allergens other than those caused by IgE allergens. The allergen is given to the person in the form of a pill, so the person can ingest the allergen directly. The person is watched for signs and symptoms. The problem with food challenges is that they must be performed in the hospital under careful watch, due to the possibility of anaphylaxis.
Food challenges, especially double-blind, placebo-controlled food challenges, are the gold standard for diagnosis of food allergies, including most non-IgE-mediated reactions. Blind food challenges involve packaging the suspected allergen into a capsule, giving it to the patient, and observing the patient for signs or symptoms of an allergic reaction.
The best method for diagnosing food allergy is to be assessed by an allergist. The allergist will review the patient's history and the symptoms or reactions that have been noted after food ingestion. If the allergist feels the symptoms or reactions are consistent with food allergy, he/she will perform allergy tests. Additional diagnostic tools for evaluation of eosinophilic or non-IgE mediated reactions include endoscopy, colonoscopy, and biopsy.
Important differential diagnoses are:
- Lactose intolerance generally develops later in life, but can present in young patients in severe cases. It is due to an enzyme deficiency (lactase) and not allergy, and occurs in many non-Western people.
- Celiac disease is an autoimmune disorder triggered by gluten proteins such as gliadin (present in wheat, rye, and barley). It is a non-IgE-mediated food allergy by definition.
- Irritable bowel syndrome
- C1 Esterase inhibitor deficiency (hereditary angioedema), a rare disease, generally causes attacks of angioedema, but can present solely with abdominal pain and occasional diarrhea.
Diagnosis of egg allergy is based on the person's history of allergic reactions, skin prick test (SPT), patch test and measurement of egg-specific serum immunoglobulin E (IgE or sIgE). Confirmation is by double-blind, placebo-controlled food challenges. SPT and sIgE have sensitivity greater than 90% but specificity in the 50-60% range, meaning these tests will detect an egg sensitivity, but will also be positive for other allergens. For young children, attempts have been made to identify SPT and sIgE responses strong enough to avoid the need for a confirming oral food challenge.
The Arthus reaction involves the in situ formation of antigen/antibody complexes after the intradermal injection of an antigen. If the animal/patient was previously sensitized (has circulating antibody), an Arthus reaction occurs. Typical of most mechanisms of the type III hypersensitivity, Arthus manifests as local vasculitis due to deposition of IgG-based immune complexes in dermal blood vessels. Activation of complement primarily results in cleavage of soluble complement proteins forming C5a and C3a, which activate recruitment of PMNs and local mast cell degranulation (requiring the binding of the immune complex onto FcγRIII), resulting in an inflammatory response. Further aggregation of immune complex-related processes induce a local fibrinoid necrosis with ischemia-aggravating thrombosis in the tissue vessel walls. The end result is a localized area of redness and induration that typically lasts a day or so.
Arthus reactions have been infrequently reported after vaccinations containing diphtheria and tetanus toxoid. The CDC's description:
Arthus reactions (type III hypersensitivity reactions) are rarely reported after vaccination and can occur after tetanus toxoid–containing or diphtheria toxoid–containing vaccines. An Arthus reaction is a local vasculitis associated with deposition of immune complexes and activation of complement. Immune complexes form in the setting of high local concentration of vaccine antigens and high circulating antibody concentration. Arthus reactions are characterized by severe pain, swelling, induration, edema, hemorrhage, and occasionally by necrosis. These symptoms and signs usually occur 4–12 hours after vaccination. ACIP has recommended that persons who experienced an Arthus reaction after a dose of tetanus toxoid–containing vaccine should not receive Td more frequently than every 10 years, even for tetanus prophylaxis as part of wound management.
The majority of children outgrow egg allergy. One review reported that 70% of children will outgrow this allergy by 16 years. In subsequently published longitudinal studies, one reported that for 140 infants who had challenge-confirmed egg allergy, 44% had resolved by two years. A second reported that for 203 infants with confirmed IgE-mediated egg allergy, 45% resolved by two years of age, 66% by four years, and 71% by six years. Children will be able to tolerate eggs as an ingredient in baked goods and well-cooked eggs sooner than under-cooked eggs. Resolution was more likely if baseline serum IgE was lower, and if the baseline symptoms did not include anaphylaxis.
Diagnosis of soy allergy is based on the person's history of allergic reactions, skin prick test (SPT), patch test and measurement of soy protein specific serum immunoglobulin E (IgE or sIgE). A negative IgE test does not rule out non-IgE mediated allergy, also described as cell-mediated allergy. SPT and sIgE have sensitivities of 55% and 83% respectively, and specificities of 68% and 38%. These numbers mean that either test may miss diagnosing an existing soy allergy, and that both can also be positive for other food allergens. Confirmation is by double-blind, placebo-controlled food challenges, conducted by an allergy specialist.
Diagnosing allergic contact dermatitis is primarily based on physical exam and medical history. In some cases doctors can establish an accurate diagnosis based on the symptoms that the patient experiences and on the rash's appearance. In the case of a single episode of allergic contact dermatitis, this is all that is necessary. Chronic and/or intermittent rashes which are not readily explained by history and physical exam often will benefit from further testing.
A patch test (contact delayed hypersensitivity allergy test) is a commonly used examination to determine the exact cause of an allergic contact dermatitis. According to the American Academy of Allergy, Asthma, and Immunology, "patch testing is the gold standard for contact allergen identification".
The patch test consists of applying small quantities of potential allergens to small patches and which are then placed on the skin. After two days, they are removed and if a skin reaction occurred to one of the substances applied, a raised bump will be noticeable underneath the patch. The tests are again read at 72 or 96 hours after application.
Patch testing is used for patients who have chronic, recurring contact dermatitis. Other tests that may be used to diagnose contact dermatitis and rule out other potential causes of the symptoms include a skin biopsy and culture of the skin lesion.
An example of a tuberculosis (TB) infection that comes under control: "M. tuberculosis" cells are engulfed by macrophages after being identified as foreign, but due to an immuno-escape mechanism peculiar to mycobacteria, TB bacteria are able to block the fusion of their enclosing phagosome with lysosomes which would destroy the bacteria. Thereby TB can continue to replicate within macrophages. After several weeks, the immune system somehow [mechanism as yet unexplained] ramps up and, on stimulation with IFN-gamma, the macrophages become capable of killing "M. tuberculosis" by forming phagolysosomes and nitric oxide radicals. The hyper-activated macrophages secrete TNF-α which recruits multiple monocytes to the site of infection. These cells differentiate into epithelioid cells which wall off the infected cells, but results in significant inflammation and local damage.
Some other clinical examples:
- Temporal arteritis
- Leprosy
- Coeliac disease
- Graft-versus-host disease
- Chronic transplant rejection
Treatment usually involves adrenaline (epinephrine), antihistamines, and corticosteroids.
If the entire body is involved, then anaphylaxis can take place, which is an acute, systemic reaction that can prove fatal.
A detailed history allows physicians to determine whether the presenting symptoms are due to an allergen or another source. Diagnostic tests such as conjunctival scrapings to look for eosinophils are helpful in determining the cause of the allergic response. Antihistamines, medication that stabilizes mast cells, and NSAIDs are safe and usually effective. Corticosteroids are reserved for more severe cases of ocular allergy disease, and their use should be monitored by an eye care physician due to possible side-effects. When an allergen is identified, the person should avoid the allergen as much as possible.
Diagnosis is based on history given by patient, including recent medications.
Type I hypersensitivity (or immediate hypersensitivity) is an allergic reaction provoked by reexposure to a specific type of antigen referred to as an allergen. Type I is not to be confused with type II, type III, or type IV hypersensitivities, nor is it to be confused with Type I Diabetes or Type I of any other disease or reaction.
Exposure may be by ingestion, inhalation, injection, or direct contact.
The Arthus reaction was discovered by Nicolas Maurice Arthus in 1903. Arthus repeatedly injected horse serum subcutaneously into rabbits. After four injections, he found that there was edema and that the serum was absorbed slowly. Further injections eventually led to gangrene.
Once a nickel allergy is detected, the best treatment is avoidance of nickel-releasing items. It is important to know the main items that can cause nickel allergy, which may be remembered using the mnemonic "BE NICKEL AWARE". The top 13 categories that contain nickel include beauty accessories, eyeglasses, money, cigarettes, clothes, kitchen and household, electronics and office equipment, metal utensils, aliment, jewelry, batteries, orthodontic and dental appliances, and medical equipment. Other than strict avoidance of items that release free nickel, there are other treatment options for reduction of exposure. The first step is to limit friction between skin and metallic items. Susceptible people may try to limit sweating while wearing nickel items, to reduce nickel release and thus decrease chances for developing sensitization and/or allergy. Another option is to shield electronics, metal devices, and tools with fabric, plastic, or acrylic coverings. Dermatological application tests has shown that barrier creams effectively prevent the symptoms of nickel allergy, such as the Nidiesque™.
There are test kits that can be very helpful to check for nickel release from items prior to purchasing. The ACDS providers can give a guidance list of safe items. In addition to avoidance, healthcare providers may prescribe additional creams or medications to help relieve the skin reaction.
Estimates of latex sensitivity in the general population range from 0.8% to 8.2%.
If the allergen is encountered and the symptoms are mild, a cold compress can be used to provide relief.
Allergic inflammation is an important pathophysiological feature of several disabilities or medical conditions including allergic asthma, atopic dermatitis, allergic rhinitis and several ocular allergic diseases. Allergic reactions may generally be divided into two components; the early phase reaction, and the late phase reaction. While the contribution to the development of symptoms from each of the phases varies greatly between diseases, both are usually present and provide us a framework for understanding allergic disease.
The early phase of the allergic reaction typically occurs within minutes, or even seconds, following allergen exposure and is also commonly referred to as the immediate allergic reaction or as a Type I allergic reaction. The reaction is caused by the release of histamine and mast cell granule proteins by a process called degranulation, as well as the production of leukotrienes, prostaglandins and cytokines, by mast cells following the cross-linking of allergen specific IgE molecules bound to mast cell FcεRI receptors. These mediators affect nerve cells causing itching, smooth muscle cells causing contraction (leading to the airway narrowing seen in allergic asthma), goblet cells causing mucus production, and endothelial cells causing vasodilatation and edema.
The late phase of a Type 1 reaction (which develops 8–12 hours and is mediated by mast cells) should not be confused with delayed hypersensitivity Type IV allergic reaction (which takes 48–72 hours to develop and is mediated by T cells). The products of the early phase reaction include chemokines and molecules that act on endothelial cells and cause them to express Intercellular adhesion molecule (such as vascular cell adhesion molecule and selectins), which together result in the recruitment and activation of leukocytes from the blood into the site of the allergic reaction. Typically, the infiltrating cells observed in allergic reactions contain a high proportion of lymphocytes, and especially, of eosinophils. The recruited eosinophils will degranulate releasing a number of cytotoxic molecules (including Major Basic Protein and eosinophil peroxidase) as well as produce a number of cytokines such as IL-5. The recruited T-cells are typically of the Th2 variety and the cytokines they produce lead to further recruitment of mast cells and eosinophils, and in plasma cell isotype switching to IgE which will bind to the mast cell FcεRI receptors and prime the individual for further allergic responses.