Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The importance of correctly recognizing progressive muscular atrophy as opposed to ALS is important for several reasons.
- 1) the prognosis is a little better. A recent study found the 5-year survival rate in PMA to be 33% (vs 20% in ALS) and the 10-year survival rate to be 12% (vs 6% in ALS).
- 2) Patients with PMA do not suffer from the cognitive change identified in certain groups of patients with MND.
- 3) Because PMA patients do not have UMN signs, they usually do not meet the "World Federation of Neurology El Escorial Research Criteria" for “Definite” or “Probable” ALS and so are ineligible to participate in the majority of clinical research trials such as drugs trials or brain scans.
- 4) Because of its rarity (even compared to ALS) and confusion about the condition, some insurance policies or local healthcare policies may not recognize PMA as being the life-changing illness that it is. In cases where being classified as being PMA rather than ALS is likely to restrict access to services, it may be preferable to be diagnosed as "slowly progressive ALS" or "lower motor neuron predominant" ALS.
An initial diagnosis of PMA could turn out to be slowly progressive ALS many years later, sometimes even decades after the initial diagnosis. The occurrence of upper motor neurone symptoms such as brisk reflexes, spasticity, or a Babinski sign would indicate a progression to ALS; the correct diagnosis is also occasionally made on autopsy.
Physiotherapy intervention aims to improve balance and gait of OPCA patients, by stimulating neuroplastic changes in the atrophied neural structure. A challenge-oriented treatment program has previously been shown to be beneficial for individuals with ataxia from OPCA. The treatment program was composed of repetitive training with task challenges (e.g. obstacle course) and/or novel motor skills acquisition over a 12-week period under the supervision of a physiotherapist. Task challenges were progressed only when the patient showed mastery of a task.
Overground harness systems may be used to allow OPCA patients to challenge their balance without chance of falling. Furthermore, home exercise programs and/or aquatic exercises are used to allow more repetitions to facilitate balance learning. Treatment programs should be frequently monitored and adjusted based on a patient's progress. Outcome measures such as the Berg Balance Scale, Dynamic Gait Index and activities-specific balance confidence scales are useful to assess patient’s progress over time.
Since the early 2000s, genetic testing that measures the size of the D4Z4 deletions on 4q35 has become the preferred mechanism for confirming the presence of FSHD. As of 2007, this test is considered highly accurate but is still performed by a limited set of labs in the US, such as Athena diagnostics under test code 405. However, because the test is expensive, patients and doctors may still rely on one or more of the following tests, all of which are far less accurate and specific than the genetic test:
- Creatine kinase (CK) level: This test measures the Creatine kinase enzyme in the blood. Elevated levels of CK are related to muscle atrophy.
- electromyogram (EMG): This test measures the electrical activity in the muscle
- nerve conduction velocity (NCV): This test measures the how fast signals travel from one part of a nerve to another. The nerve signals are measured with surface electrodes (similar to those used for an electrocardiogram), and the test is only slightly uncomfortable.
- muscle biopsy: Through outpatient surgery a small piece of muscle is removed (usually from the arm or leg) and evaluated with a variety of biochemical tests. Researchers are attempting to match results of muscle biopsies with DNA tests to better understand how variations in the genome present themselves in tissue anomalies.
PMA is a diagnosis of exclusion, there is no specific test which can conclusively establish whether a patient has the condition. Instead, a number of other possibilities have to be ruled out, such as multifocal motor neuropathy or spinal muscular atrophy. Tests used in the diagnostic process include MRI, clinical examination, and EMG. EMG tests in patients who do have PMA usually show denervation (neurone death) in most affected body parts, and in some unaffected parts too.
It typically takes longer to be diagnosed with PMA than ALS, an average of 20 months for PMA vs 15 months in ALS/MND.
Olivopontocerebellar atrophy is hereditary, but has an unknown genetic basis. There are two forms:
A few non-hereditary diseases formerly categorized as olivopontocerebellar atrophy have been reclassified as forms of multiple system atrophy as well as to four hereditary types, that have been currently reclassified as four different forms of spinocerebellar ataxia:
It is not necessary to biopsy an ocular muscle to demonstrate histopathologic abnormalities. Cross-section of muscle fibers stained with Gömöri trichrome stain is viewed using light microscopy. In muscle fibers containing high ratios of the mutated mitochondria, there is a higher concentration of mitochondria. This gives these fibers a darker red color, causing the overall appearance of the biopsy to be described as "ragged red fibers. Abnormalities may also be demonstrated in muscle biopsy samples using other histochemical studies such as mitochondrial enzyme stains, by electron microscopy, biochemical analyses of the muscle tissue (ie electron transport chain enzyme activities), and by analysis of muscle mitochondrial DNA. "
A neuro-ophthalmologist is usually involved in the diagnosis and management of KSS. An individual should be suspected of having KSS based upon clinical exam findings. Suspicion for myopathies should be increased in patients whose ophthalmoplegia does not match a particular set of cranial nerve palsies (oculomotor nerve palsy, fourth nerve palsy, sixth nerve palsy). Initially, imaging studies are often performed to rule out more common pathologies. Diagnosis may be confirmed with muscle biopsy, and may be supplemented with PCR determination of mtDNA mutations.
Dejerine–Sottas disease, also known as Dejerine–Sottas syndrome, Dejerine–Sottas neuropathy, progressive hypertrophic interstitial polyneuropathy of childhood and onion bulb neuropathy (and, "hereditary motor and sensory polyneuropathy type III" and "Charcot–Marie–Tooth disease type 3"), is a hereditary neurological disorder characterised by damage to the peripheral nerves and resulting progressive muscle wasting. The condition is caused by mutations in a various genes and currently has no known cure.
The disorder is named for Joseph Jules Dejerine and Jules Sottas, French neurologists who first described it.
Onset occurs in infancy or early childhood, usually before 3 years of age. Progression is slow until the teenage years at which point it may accelerate, resulting in severe disability.
Symptoms are usually more severe and rapidly progressive than in the other more common Charcot–Marie–Tooth diseases. Some patients may never walk and solely use wheelchairs by the end of their first decade, while others may need only a cane (walking stick) or similar support through life.
Dejerine–Sottas disease is characterized by moderate to severe lower and upper extremity weakness and loss of sensation, which occur mainly in the lower legs, forearms, feet and hands. Loss of muscle mass and reduced muscle tone can occur as the disease progresses. Other symptoms may include pain in the extremities, curvature of the spine, clawed hands, foot deformities, ataxia, peripheral areflexia, and slow acquisition of motor skills in childhood. Symptoms that are less common can include limitation of eye movements, other eye problems such as nystagmus or anisocoria, or mild hearing loss.
In 2007 the FSHD Global Research Foundation was established to increase the amount of funding available to research bodies. The Foundation has identified 13 priority areas of interest for FSHD research.
The health care provider will perform a physical exam. Detailed questions will be asked about the symptoms.
If a streptococcus infection is suspected, tests will be done to confirm the infection. These include:
- Throat swab
- Anti-DNAse B blood test
- Antistreptolysin O (ASO) blood test
Further testing may include:
- Blood tests such as ESR, CBC
- MRI or CT scan of the brain
Historically, misdiagnosis rates have been high due to the complex nature of the disorder although some research now indicates that misdiagnosis may be reducing.
A CT scan can distinguish muscle tissue from other tissues and thereby estimate the amount of muscle tissue in the body.
Fast loss of muscle tissue (relative to normal turnover), can be approximated by the amount of urea in the urine. The equivalent nitrogen content (in gram) of urea (in mmol) can be estimated by the conversion factor 0.028 g/mmol. Furthermore, 1 gram of nitrogen is roughly equivalent to 6 gram of protein, and 1 gram of protein is roughly equivalent to 4 gram of muscle tissue. Subsequently, in situations such as muscle wasting, 1 mmol of excessive urea in the urine (as measured by urine volume in litres multiplied by urea concentration in mmol/l) roughly corresponds to a muscle loss of 0.67 gram.
The International Classification of Disease (ICD-11) which is due to be finalised in 2017 will have functional disorders within the neurology section for the first time.
EMG &NCV can help to treatment with the diagnosis of the location and severity of the lesion.
Muscle atrophy can be opposed by the signaling pathways which induce muscle hypertrophy, or an increase in muscle size. Therefore, one way in which not exercise induces an increase in muscle mass is to down regulate the pathways which have the opposite effect.
β-hydroxy β-methylbutyrate (HMB), a metabolite of leucine which is sold as a dietary supplement, has demonstrated efficacy in preventing the loss of muscle mass in several muscle wasting conditions in humans, particularly sarcopenia. A growing body of evidence supports the efficacy of HMB as a treatment for reducing, or even reversing, the loss of muscle mass, muscle function, and muscle strength in hypercatabolic disease states such as cancer cachexia; consequently, it is recommended that both the prevention and treatment of sarcopenia and muscle wasting in general include supplementation with HMB, regular resistance exercise, and consumption of a high-protein diet. Based upon a meta-analysis of seven randomized controlled trials that was published in 2015, HMB supplementation has efficacy as a treatment for preserving lean muscle mass in older adults. More research is needed to determine the precise effects of HMB on muscle strength and function in this age group.
Since the absence of muscle-building amino acids can contribute to muscle wasting (that which is torn down must be rebuilt with like material), amino acid therapy may be helpful for regenerating damaged or atrophied muscle tissue. The branched-chain amino acids or BCAAs (leucine, isoleucine, and valine) are critical to this process, in addition to lysine and other amino acids.
In severe cases of muscular atrophy, the use of an anabolic steroid such as methandrostenolone may be administered to patients as a potential treatment. A novel class of drugs, called SARM (selective androgen receptor modulators) are being investigated with promising results. They would have fewer side-effects, while still promoting muscle and bone tissue growth and regeneration. These claims are, however, yet to be confirmed in larger clinical trials.
One important rehabilitation tool for muscle atrophy includes the use of functional electrical stimulation to stimulate the muscles. This has seen a large amount of success in the rehabilitation of paraplegic patients.
Currently, CTE can only be definitively diagnosed by direct tissue examination after death, including full and immunohistochemical brain analyses.
The lack of "in vivo" techniques to show distinct biomarkers for CTE is the reason CTE cannot currently be diagnosed while a person is alive. The only known diagnosis for CTE occurs by studying the brain tissue after death. Concussions are non-structural injuries and do not result in brain bleeding, which is why most concussions cannot be seen on routine neuroimaging tests such as CT or MRI. Acute concussion symptoms (those that occur shortly after an injury) should not be confused with CTE. Differentiating between prolonged post-concussion syndrome (PCS, where symptoms begin shortly after a concussion and last for weeks, months, and sometimes even years) and CTE symptoms can be difficult. Research studies are currently examining whether neuroimaging can detect subtle changes in axonal integrity and structural lesions that can occur in CTE. Recently, more progress in in-vivo diagnostic techniques for CTE has been made, using DTI, fMRI, MRI, and MRS imaging; however, more research needs to be done before any such techniques can be validated.
PET tracers that bind specifically to tau protein are desired to aid diagnosis of CTE in living individuals. One candidate is the tracer [F]FDDNP, which is retained in the brain in individuals with a number of dementing disorders such as Alzheimer's disease, Down syndrome, progressive supranuclear palsy, familial frontotemporal dementia, and Creutzfeldt–Jakob disease. In a small study of 5 retired NFL players with cognitive and mood symptoms, the PET scans revealed accumulation of the tracer in their brains. However, [F]FDDNP binds to beta-amyloid and other proteins as well. Moreover, the sites in the brain where the tracer was retained were not consistent with the known neuropathology of CTE. A more promising candidate is the tracer [F]-T807, which binds only to tau. It is being tested in several clinical trials.
A putative biomarker for CTE is the presence in serum of autoantibodies against the brain. The autoantibodies were detected in football players who experienced a large number of head hits but no concussions, suggesting that even sub-concussive episodes may be damaging to the brain. The autoantibodies may enter the brain by means of a disrupted blood-brain barrier, and attack neuronal cells which are normally protected from an immune onslaught. Given the large numbers of neurons present in the brain (86 billion), and considering the poor penetration of antibodies across a normal blood-brain barrier, there is an extended period of time between the initial events (head hits) and the development of any signs or symptoms. Nevertheless, autoimmune changes in blood of players may consist the earliest measurable event predicting CTE.
Robert A. Stern, one of the scientists at the Boston University CTE Center, said in 2015 that "he expected a test to be developed within a decade that will be able to diagnose C.T.E. in living people".
Physiotherapy
To increase strength of muscle
To improve muscle functions
Electrical modalities =Electric stimulation.etc.
Occupational Therapy
Positioning, ROM, Sensory, Splinting
Treatment of Sydenham's Chorea is based on the following principles:
1. The first tenet of treatment is to eliminate the streptococcus at a primary, secondary and tertiary level. Strategies involve the adequate treatment of throat and skin infections, with a course of penicillin when Sydenham's Chorea is newly diagnosed, followed by long-term penicillin prophylaxis. Behavioural and emotional changes may precede the movement disorders in a previously well child.
2. Treatment of movement disorders. Therapeutic efforts are limited to palliation of the movement disorders. Haloperidol is frequently used because of its anti-dopaminergic effect. It has serious potential side-effects, e.g., tardive dyskinesia. In a study conducted at the RFC, 25 out of 39 patients on haloperidol reported side-effects severe enough to cause the physician or parent to discontinue treatment or reduce the dose. Other medications which have been used to control the movements include pimozide, clonidine, valproic acid, carbamazepine and phenobarbitone.
3. Immunomodulatory interventions include steroids, intravenous immunoglobulins, and plasma exchange. Patients may benefit from treatment with steroids; controlled clinical trials are indicated to explore this further.
4. There are several historical case series reporting successful treatment of Sydenham's Chorea by inducing fever.
Expensive and invasive, the above treatments are not guaranteed to work, and are not meeting the needs of patients. There is a need for a new, less expensive, less invasive form of treatment, two of which are postulated below.
- Spinal cord stimulation has been studied in the last couple of years. In a long case study, 8 patients were given spinal cord stimulation via insertion of a percutaneous lead at the appropriate level of the cervical or thoracic spine. Between 36 and 149 months after the stimulations, the patients were interviewed. 6 of the 8 had received initial pain relief, and three experienced long-term pain relief. Spinal cord stimulation is cheaper than brain stimulation and less invasive, and is thus a more promising option for pain treatment.
- In 2007, Dr. V. S. Ramachandran and his lab proposed that caloric stimulation might be effective in treating Dejerine–Roussy syndrome. They hypothesized that if cold water was streamed into the ear down the auditory canal, the symptoms associated with Dejerine–Roussy syndrome would be alleviated. Ramachandran stated that he had carried out provisional experiments on two patients and believed that their reactions supported his theory.
As with other neuroleptic-induced tardive syndromes, there is no definite treatment for tardive dysphrenia. The continuing to take the drug or changing the dosage of the atypical antipsychotic drug in use, or augmenting it with a typical antipsychotic, can alleviate symptoms temporarily. However, these solutions carry the risk of worsening or perpetuating the iatrogenesis in the long term.
Some patients could gradually benefit from changing to a dopamine D2 receptor partial agonist agent like clozapine. These drugs do not induce up-regulation, instead acting as a prophylactic.
Tardive dysphrenia is characterized by a worsening of psychiatric symptoms that can be directly traced to the administration of antipsychotic medication.
Six symptoms are considered when diagnosing tardive dysphrenia:
A) The patient shows:
B) The symptoms are present for a full four weeks (full two weeks if successfully treated by immediate reinstitution or augmentation with a more potent drug and/or the rising of the previous drug) and contain any of these patterns:
C) Criteria A & B signs and symptoms emerge progressively with the administration of an oral antipsychotic drug or during the four-weeks period that follows its withdrawal (8 weeks for dépôt formulations).
D) There has been any exposure to a typical and/or atypical antipsychotic drug for at least three full months (full 12 weeks), or 1 full month (full 4 weeks) if the patient is sixty years old or older.
E) The clinical signs and symptoms cannot be attributed to another psychiatric condition, neurological condition, somatic illness, or severe stress. Also, exposure to other psychosis-inducing medicines must be excluded.
F) The signs and symptoms could not be better explained by an eventual previous psychiatric/neurological condition unfavorable natural evolution (i.e., Primary Refractory or poor prognosis Schizophrenia; severe Acute Mania; Dementia with Psychotic Symptoms) or by Neuroleptic Dysphoria.
Of the millions experiencing strokes worldwide, over 30,000 in the United States alone have developed some form of Dejerine–Roussy syndrome. 8% of all stroke patients will experience central pain syndrome, with 5% experiencing moderate to severe pain. The risk of developing Dejerine–Roussy syndrome is higher in older stroke patients, about 11% of stroke patients over the age of 80.
Medial medullary syndrome, also known as inferior alternating syndrome, hypoglossal alternating hemiplegia, lower alternating hemiplegia, or Dejerine syndrome, is a type of alternating hemiplegia characterized by a set of clinical features resulting from occlusion of the anterior spinal artery. This results in the infarction of medial part of the medulla oblongata.
Blastomere biopsy is a technique in which blastomeres are removed from the zona pellucida. It is commonly used to detect aneuploidy. Genetic analysis is conducted once the procedure is complete. Additional studies are needed to assess the risk associated with the procedure.