Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The official recommendation from the United States Preventive Services Task Force is that for persons that do not fall within an at-risk population and are asymptomatic, there is not enough evidence to prove that there is any benefit in screening for vitamin D deficiency.
The serum concentration of 25(OH)D is typically used to determine vitamin D status. Most vitamin D is converted to 25(OH)D in the serum, giving an accurate picture of vitamin D status.
The level of serum 1,25(OH)D is not usually used to determine vitamin D status because it often is regulated by other hormones in the body such as parathyroid hormone. The levels of 1,25(OH)D can remain normal even when a person may be vitamin D deficient.
Serum level of 25(OH)D is the laboratory test ordered to indicate whether or not a person has vitamin D deficiency or insufficiency.
It is also considered reasonable to treat at-risk persons with vitamin D supplementation without checking the level of 25(OH)D in the serum, as vitamin D toxicity has only been rarely reported to occur.
Levels of 25(OH)D that are consistently above 200 ng/mL (500 nmol/L) are thought to be potentially toxic, although data from humans are sparse. Vitamin D toxicity usually results from taking supplements in excess. Hypercalcemia is often the cause of symptoms, and levels of 25(OH)D above 150 ng/mL (375 nmol/L) are usually found, although in some cases 25(OH)D levels may appear to be normal. Periodic measurement of serum calcium in individuals receiving large doses of vitamin D is recommended.
The National Institutes of Health has found that "Large amounts of folic acid can mask the damaging effects of vitamin B deficiency by correcting the megaloblastic anemia caused by vitamin B deficiency without correcting the neurological damage that also occurs", there are also indications that "high serum folate levels might not only mask vitamin B deficiency, but could also exacerbate the anemia and worsen the cognitive symptoms associated with vitamin B deficiency". Due to the fact that in the United States legislation has required enriched flour to contain folic acid to reduce cases of fetal neural-tube defects, consumers may be ingesting more than they realize. To counter the masking effect of B deficiency the NIH recommends "folic acid intake from fortified food and supplements should not exceed 1,000 μg daily in healthy adults." Most importantly, B deficiency needs to be treated with B repletion. Limiting folic acid will not counter the irrevocable neurological damage that is caused by untreated B deficiency.
Serum B levels are often low in B deficiency, but if other features of B deficiency are present with normal B then further investigation is warranted. One possible explanation for normal B levels in B deficiency is antibody interference in people with high titres of intrinsic factor antibody.
Some researchers propose that the current standard norms of vitamin B levels are too low.
One Japanese study states the normal limits as 500–1,300 pg/mL. Range of vitamin B12 levels in humans is considered as normal: >300 pg/mL; moderate deficiency: 201–300 pg/mL; and severe deficiency: <201 pg/mL.
Serum vitamin B tests results are in pg/mL (picograms/milliliter) or pmol/L (picomoles/liter). The laboratory reference ranges for these units are similar, since the molecular weight of B is approximately 1000, the difference between mL and L. Thus: 550 pg/mL = 400 pmol/L.
Serum homocysteine and methylmalonic acid levels are considered more reliable indicators of B deficiency than the concentration of B in blood. The levels of these substances are high in B deficiency and can be helpful if the diagnosis is unclear.
Routine monitoring of methylmalonic acid levels in urine is an option for people who may not be getting enough dietary B, as a rise in methylmalonic acid levels may be an early indication of deficiency.
If nervous system damage is suspected, B analysis in cerebrospinal fluid is possible, though such an invasive test should be considered only if blood testing is inconclusive.
The Schilling test has been largely supplanted by tests for antiparietal cell and intrinsic factor antibodies.
Day to day requirements of vitamin d are set around 800-1000IU to maintain healthy levels which in most cases can be provided by sun exposure. Increased amounts are required for individuals who are previously diagnosed as deficient. For those of moderate deficiencies,oral supplementation can be implemented into the diet at levels of 3000-5000 IU per day for a 6- to 12-week period continued by an ongoing reduced dose of 1000- 2000 IU per day to maintain stores in the body.
Severe deficiency is treated through megadose therapy where patients are given doses around 100 000 IU to assist in raising stores faster to ensure physical health in restored to prevent further illness or disease.
In the United States, biotin supplements are readily available without a prescription in amounts ranging from 1,000 to 10,000 micrograms (30 micrograms is identified as Adequate Intake).
The assessment of vitamin B status is essential, as the clinical signs and symptoms in less severe cases are not specific. The three biochemical tests most widely used are the activation coefficient for the erythrocyte enzyme aspartate aminotransferase, plasma PLP concentrations, and the urinary excretion of vitamin B degradation products, specifically urinary PA. Of these, plasma PLP is probably the best single measure, because it reflects tissue stores. Plasma PLP less than 10 nmol/l is indicative of vitamin B deficiency. A PLP concentration greater than 20 nmol/l has been chosen as a level of adequacy for establishing Estimated Average Requirements and Recommended Daily Allowances in the USA. Urinary PA is also an indicator of vitamin B deficiency; levels of less than 3.0 mmol/day is suggestive of vitamin B deficiency.
The classic syndrome for vitamin B deficiency is rare, even in developing countries. A handful of cases were seen between 1952 and 1953, particularly in the United States, and occurred in a small percentage of infants who were fed a formula lacking in pyridoxine.
Pregnancy also poses as another high risk factor for vitamin D deficiency. The status levels of vitamin D during the last stages of pregnancy directly impact the new borns first initial months of life. Babies who are exclusively breastfed with minimal exposure to sunlight or supplementation can be at greater risk of vitamin D deficiency,as human milk has minimal vitamin D present. Recommendations for infants of the age 0–12 months are set at 5 ug/day, to assist in preventing rickets in young babies. 80% of dark skinned and or veiled women in Melbourne were found to have serum levels lower than 22.5 nmol/L considering them to be within moderate ranges of vitamin D deficiency.
Because riboflavin is fluorescent under UV light, dilute solutions (0.015-0.025% w/w) are often used to detect leaks or to demonstrate coverage in an industrial system such a chemical blend tank or bioreactor. (See the ASME BPE section on Testing and Inspection for additional details.)
Adverse effects have been documented from vitamin B supplements, but never from food sources. Damage to the dorsal root ganglia is documented in human cases of overdose of pyridoxine. Although it is a water-soluble vitamin and is excreted in the urine, doses of pyridoxine in excess of the dietary upper limit (UL) over long periods cause painful and ultimately irreversible neurological problems. The primary symptoms are pain and numbness of the extremities. In severe cases, motor neuropathy may occur with "slowing of motor conduction velocities, prolonged F wave latencies, and prolonged sensory latencies in both lower extremities", causing difficulty in walking. Sensory neuropathy typically develops at doses of pyridoxine in excess of 1,000 mg per day, but adverse effects can occur with much less, so doses over 200 mg are not considered safe. Symptoms among women taking lower doses have been reported.
Existing authorizations and valuations vary considerably worldwide. As noted, the U.S. Institute of Medicine set an adult UL at 100 mg/day. The European Community Scientific Committee on Food defined intakes of 50 mg of vitamin B per day as harmful and established a UL of 25 mg/day. The nutrient reference values in Australia and New Zealand recommend an upper limit of 50 mg/day in adults. "The same figure was set for pregnancy and lactation as there is no evidence of teratogenicity at this level. The UL was set based on metabolic body size and growth considerations for all other ages and life stages except infancy. It was not possible to set a UL for infants, so intake is recommended in the form of food, milk or formula." The ULs were set using results of studies involving long-term oral administration of pyridoxine at doses of less than 1 g/day. "A no-observed-adverse-effect level (NOAEL) of 200 mg/day was identified from the studies of Bernstein & Lobitz (1988) and Del Tredici "et al" (1985). These studies involved subjects who had generally been on the supplements for five to six months or less. The study of Dalton and Dalton (1987), however, suggested the symptoms might take substantially longer than this to appear. In this latter retrospective survey, subjects who reported symptoms had been on supplements for 2.9 years, on average. Those reporting no symptoms had taken supplements for 1.9 years."
Overt clinical signs are rarely seen among inhabitants of the developed countries. The assessment of Riboflavin status is essential for confirming cases with unspecific symptoms where deficiency is suspected.
- Glutathione reductase is a nicotinamide adenine dinucleotide phosphate (NADPH) and FAD-dependent enzyme, and the major flavoprotein in erythrocyte. The measurement of the activity coefficient of erythrocyte glutathione reductase (EGR) is the preferred method for assessing riboflavin status. It provides a measure of tissue saturation and long-term riboflavin status. In vitro enzyme activity in terms of activity coefficients (AC) is determined both with and without the addition of FAD to the medium. ACs represent a ratio of the enzyme’s activity with FAD to the enzyme’s activity without FAD. An AC of 1.2 to 1.4, riboflavin status is considered low when FAD is added to stimulate enzyme activity. An AC > 1.4 suggests riboflavin deficiency. On the other hand, if FAD is added and AC is < 1.2, then riboflavin status is considered acceptable. Tillotson and Bashor reported that a decrease in the intakes of riboflavin was associated with increase in EGR AC. In the UK study of Norwich elderly, initial EGR AC values for both males and females were significantly correlated with those measured 2 years later, suggesting that EGR AC may be a reliable measure of long-term biochemical riboflavin status of individuals. These findings are consistent with earlier studies.
- Experimental balance studies indicate that urinary riboflavin excretion rates increase slowly with increasing intakes, until intake level approach 1.0 mg/d, when tissue saturation occurs. At higher intakes, the rate of excretion increases dramatically. Once intakes of 2.5 mg/d are reached, excretion becomes approximately equal to the rate of absorption (Horwitt et al., 1950) (18). At such high intake a significant proportion of the riboflavin intake is not absorbed. If urinary riboflavin excretion is <19 µg/g creatinine (without recent riboflavin intake) or < 40 µg per day are indicative of deficiency.
Since biotin is in many foods at low concentrations, deficiency is rare except in locations where malnourishment is very common. Pregnancy, however, alters biotin catabolism and despite a regular biotin intake, half of the pregnant women in the U.S. are marginally biotin deficient.
Biotinidase deficiency can be found by genetic testing. This is often done at birth as part of newborn screening in several states throughout the United States. Results are found through testing a small amount of blood gathered through a heel prick of the infant. As not all states require that this test be done, it is often skipped in those where such testing is not required. Biotinidase deficiency can also be found by sequencing the "BTD" gene, particularly in those with a family history or known familial gene mutation.
A positive diagnosis test for thiamine deficiency can be ascertained by measuring the activity of the enzyme transketolase in erythrocytes (Erythrocyte Transketolase Activation Assay). Thiamine, as well as its phosphate derivatives, can also be detected directly in whole blood, tissues, foods, animal feed, and pharmaceutical preparations following the conversion of thiamine to fluorescent thiochrome derivatives (Thiochrome Assay) and separation by high-performance liquid chromatography (HPLC). In recent reports, a number of Capillary Electrophoresis (CE) techniques and in-capillary enzyme reaction methods have emerged as potential alternative techniques for the determination and monitoring of thiamine in samples.
The normal thiamine concentration in EDTA-blood is about 20-100 µg/l.
In plants a micronutrient deficiency (or trace mineral deficiency) is a physiological plant disorder which occurs when a micronutrient is deficient in the soil in which a plant grows. Micronutrients are distinguished from macronutrients (nitrogen, phosphorus, sulfur, potassium, calcium and magnesium) by the relatively low quantities needed by the plant.
A number of elements are known to be needed in these small amounts for proper plant growth and development. Nutrient deficiencies in these areas can adversely affect plant growth and development. Some of the best known trace mineral deficiencies include: zinc deficiency, boron deficiency, iron deficiency, and manganese deficiency.
Micronutrient deficiencies affect more than two billion people of all ages in both developing and industrialized countries. They are the cause of some diseases, exacerbate others and are recognized as having an important impact on worldwide health. Important micronutrients include iodine, iron, zinc, calcium, selenium, fluorine, and vitamins A, B, B, B, B, B, and C.
Micronutrient deficiencies are associated with 10% of all children's deaths, and are therefore of special concern to those involved with child welfare. Deficiencies of essential vitamins or minerals such as Vitamin A, iron, and zinc may be caused by long-term shortages of nutritious food or by infections such as intestinal worms. They may also be caused or exacerbated when illnesses (such as diarrhoea or malaria) cause rapid loss of nutrients through feces or vomit.
Raw eggs should be avoided in those with biotin deficiency, because egg whites contain high levels of the anti-nutrient avidin. The name avidin literally means that this protein has an "avidity" (Latin: "to eagerly long for") for biotin. Avidin binds irreversibly to biotin and this compound is then excreted in the urine.
The initial workup of abetalipoproteinemia typically consists of stool sampling, a blood smear, and a fasting lipid panel though these tests are not confirmatory. As the disease is rare, though a genetics test is necessary for diagnosis, it is generally not done initially.
Acanthocytes are seen on blood smear. Since there is no or little assimilation of chylomicrons, their levels in plasma remains low.
The inability to absorb fat in the ileum will result in steatorrhea, or fat in the stool. As a result, this can be clinically diagnosed when foul-smelling stool is encountered. Low levels of plasma chylomicron are also characteristic.
There is an absence of apolipoprotein B. On intestinal biopsy, vacuoles containing lipids are seen in enterocytes. This disorder may also result in fat accumulation in the liver (hepatic steatosis). Because the epithelial cells of the bowel lack the ability to place fats into chylomicrons, lipids accumulate at the surface of the cell, crowding the functions that are necessary for proper absorption.
Many people with beriberi can be treated with thiamine alone. Given thiamine intravenously (and later orally), rapid and dramatic recovery can occur within hours. In situations where concentrated thiamine supplements are unavailable, feeding the person with a thiamine-rich diet (e.g. whole grain brown bread) will lead to recovery, though at a much slower rate.
Following thiamine treatment, rapid improvement occurs, in general, within 24 hours. Improvements of peripheral neuropathy may require several months of thiamine treatment.
Diagnosis typically is based on physical signs, X-rays, and improvement after treatment.
There are two main types of protein C assays, activity and antigen (immunoassays). Commercially available activity assays are based on chromogenic assays that use activation by snake venom in an activating reagent, or clotting and enzyme-linked immunosorbant assays. Repeated testing for protein C functional activity allows differentiation between transient and congenital deficiency of protein C.
Initially, a protein C activity (functional) assay can be performed, and if the result is low, a protein C antigen assay can be considered to determine the deficiency subtype (Type I or Type II). In type I deficiencies, normally functioning protein C molecules are made in reduced quantity. In type II deficiencies normal amounts of dysfunctional protein C are synthesized.
Antigen assays are immunoassays designed to measure the quantity of protein C regardless of its function. Type I deficiencies are therefore characterized by a decrease in both activity and antigen protein C assays whereas type II deficiencies exhibit normal protein C antigen levels with decreased activity levels.
The human protein C gene (PROC) comprises 9 exons, and protein C deficiency has been linked to over 160 mutations to date. Therefore, DNA testing for protein C deficiency is generally not available outside of specialized research laboratories.
Manifestation of purpura fulminans as it is usually associated with reduced protein C plasma concentrations of <5 mg IU/dL. The normal concentration of plasma protein C is 70 nM (4 µg/mL) with a half live of approximately 8 hours. Healthy term neonates, however, have lower (and more variable) physiological levels of protein C (ranging between 15-55 IU/dL) than older children or adults, and these concentrations progressively increase throughout the first 6 months of life. Protein C levels may be <10 IU/dL in preterm or twin neonates or those with respiratory distress without manifesting either purpura fulminans or disseminated intravascular coagulation.
Whether MTHFR deficiency has any effect at all on all-cause mortality is unclear. One Dutch study showed that the MTHFR mutation was more prevalent in younger individuals (36% relative to 30%), and found that elderly men with MTHFR had an elevated mortality rate, attributable to cancer. Among women, however, no difference in life expectancy was seen. More recently, however, a meta-analysis has shown that overall cancer rates are barely increased with an odds ratio of 1.07, which suggests that an impact on mortality from cancer is small or zero.
In common forms of MTHFR deficiency, elevated plasma homocysteine levels have sometimes been treated with Vitamin B12 and low doses of folic acid. Although this treatment significantly decreases the serum levels of homocysteine, this treatment is not thought to improve health outcomes.
Due to the ineffectiveness of these treatments, it is no-longer considered clinically useful to test for MTHFR in most cases of thrombophilia or recurrent pregnancy loss.
The term homocystinuria describes an increased excretion of the thiol amino acid homocysteine in urine (and incidentally, also an increased concentration in plasma). The source of this increase may be one of many metabolic factors, only one of which is CBS deficiency. Others include the re-methylation defects (cobalamin defects, methionine sythase deficiency, MTHFR) and vitamin deficiencies (cobalamin (vitamin B12) deficiency, folate (vitamin B9) deficiency, riboflavin deficiency (vitamin B2), pyridoxal phosphate deficiency (vitamin B6)). In light of this information, a combined approach to laboratory diagnosis is required to reach a differential diagnosis.
CBS deficiency may be diagnosed by routine metabolic biochemistry. In the first instance, plasma or urine amino acid analysis will frequently show an elevation of methionine and the presence of homocysteine. Many neonatal screening programs include methionine as a metabolite. The disorder may be distinguished from the re-methylation defects (e.g., MTHFR, methionine synthase deficiency and the cobalamin defects) in lieu of the elevated methionine concentration. Additionally, organic acid analysis or quantitative determination of methylmalonic acid should help to exclude cobalamin (vitamin B12) defects and vitamin B12 deficiency giving a differential diagnosis.
The laboratory analysis of homocysteine itself is complicated because most homocysteine (possibly above 85%) is bound to other thiol amino acids and proteins in the form of disulphides (e.g., cysteine in cystine-homocysteine, homocysteine in homocysteine-homocysteine) via disulfide bonds. Since as an equilibrium process the proportion of free homocystene is variable a true value of total homocysteine (free + bound) is useful for confirming diagnosis and particularly for monitoring of treatment efficacy. To this end it is prudent to perform total homocyst(e)ine analysis in which all disulphide bonds are subject to reduction prior to analysis, traditionally by HPLC after derivatisation with a fluorescent agent, thus giving a true reflection of the quantity of homocysteine in a plasma sample.
Infants with rickets often have bone fractures. This sometimes leads to child abuse allegations. This issue appears to be more common for solely nursing infants of black mothers, in winter in temperate climates, suffering poor nutrition and no vitamin D supplementation. People with darker skin produce less vitamin D than those with lighter skin, for the same amount of sunlight.