Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In lymph node biopsies, the typical histopathologic pattern is characterized by geographic areas of necrosis with neutrophils and necrotizing granulomas. The pattern is non specific and similar to other infectious lymphadenopathies.
The laboratorial isolation of "F. tularensis" requires special media such as buffered charcoal yeast extract agar. It cannot be isolated in the routine culture media because of the need for sulfhydryl group donors (such as cysteine). The microbiologist must be informed when tularemia is suspected not only to include the special media for appropriate isolation, but also to ensure that safety precautions are taken to avoid contamination of laboratory personnel.
Serological tests (detection of antibodies in the serum of the patients) are available and widely used. Cross reactivity with "Brucella" can confuse interpretation of the results, so diagnosis should not rely only on serology. Molecular methods such as PCR are available in reference laboratories.
Since the invention of antibiotics, the rate of death associated with tularemia has decreased from 60% to less than 4%.
On infection the microorganism can be found in blood and cerebrospinal fluid (CSF) for the first 7 to 10 days (invoking serologically identifiable reactions) and then moving to the kidneys. After 7 to 10 days the microorganism can be found in fresh urine. Hence, early diagnostic efforts include testing a serum or blood sample serologically with a panel of different strains.
Kidney function tests (blood urea nitrogen and creatinine) as well as blood tests for liver functions are performed. The latter reveal a moderate elevation of transaminases. Brief elevations of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and gamma-glutamyltransferase (GGT) levels are relatively mild. These levels may be normal, even in children with jaundice.
Diagnosis of leptospirosis is confirmed with tests such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR). The MAT (microscopic agglutination test), a serological test, is considered the gold standard in diagnosing leptospirosis. As a large panel of different leptospira must be subcultured frequently, which is both laborious and expensive, it is underused, especially in developing countries.
Differential diagnosis list for leptospirosis is very large due to diverse symptoms. For forms with middle to high severity, the list includes dengue fever and other hemorrhagic fevers, hepatitis of various causes, viral meningitis, malaria, and typhoid fever. Light forms should be distinguished from influenza and other related viral diseases. Specific tests are a must for proper diagnosis of leptospirosis.
Under circumstances of limited access (e.g., developing countries) to specific diagnostic means, close attention must be paid to the medical history of the patient. Factors such as certain dwelling areas, seasonality, contact with stagnant contaminated water (bathing, swimming, working on flooded meadows, etc.) or rodents in the medical history support the leptospirosis hypothesis and serve as indications for specific tests (if available).
"Leptospira" can be cultured in Ellinghausen-McCullough-Johnson-Harris medium (EMJH), which is incubated at 28 to 30 °C. The median time to positivity is three weeks with a maximum of three months. This makes culture techniques useless for diagnostic purposes but is commonly used in research.
The Coggins test (agar immunodiffusion) is a sensitive diagnostic test for equine infectious anemia developed by Dr. Leroy Coggins in the 1970s.
Currently, the US does not have an eradication program due to the low rate of incidence. However, many states require a negative Coggins test for interstate travel. In addition, most horse shows and events require a negative Coggins test. Most countries require a negative test result before allowing an imported horse into the country.
Horse owners should verify that all the horses at a breeding farm and or boarding facility have a negative Coggins test before using the services of the facility. A Coggins test should be done on an annual basis. Tests every 6 months are recommended if there is increased traveling.
Doxycycline has been provided once a week as a prophylaxis to minimize infections during outbreaks in endemic regions. However, there is no evidence that chemoprophylaxis is effective in containing outbreaks of leptospirosis, and use of antibiotics increases antibiotics resistance. Pre-exposure prophylaxis may be beneficial for individuals traveling to high-risk areas for a short stay.
Effective rat control and avoidance of urine contaminated water sources are essential preventive measures. Human vaccines are available only in a few countries, such as Cuba and China. Animal vaccines only cover a few strains of the bacteria. Dog vaccines are effective for at least one year.
Only specialized laboratories can adequately diagnose "Babesia" infection in humans, so "Babesia" infections are considered highly under-reported. It develops in patients who live in or travel to an endemic area or receive a contaminated blood transfusion within the preceding 9 weeks, so this aspect of the medical history is vital. Babesiosis may be suspected when a person with such an exposure history develops persistent fevers and hemolytic anemia. The definitive diagnostic test is the identification of parasites on a Giemsa-stained thin-film blood smear.
So-called "Maltese cross formations" on the blood film are diagnostic (pathognomonic) of babesiosis, since they are not seen in malaria, the primary differential diagnosis. Careful examination of multiple smears may be necessary, since "Babesia" may infect less than 1% of circulating red blood cells, thus be easily overlooked.
Serologic testing for antibodies against "Babesia" (both IgG and IgM) can detect low-level infection in cases with a high clinical suspicion, but negative blood film examinations. Serology is also useful for differentiating babesiosis from malaria in cases where people are at risk for both infections. Since detectable antibody responses require about a week after infection to develop, serologic testing may be falsely negative early in the disease course.
A polymerase chain reaction (PCR) test has been developed for the detection of "Babesia" from the peripheral blood. PCR may be at least as sensitive and specific as blood-film examination in diagnosing babesiosis, though it is also significantly more expensive. Most often, PCR testing is used in conjunction with blood film examination and possibly serologic testing.
Other laboratory findings include decreased numbers of red blood cells and platelets on complete blood count.
In animals, babesiosis is suspected by observation of clinical signs (hemoglobinuria and anemia) in animals in endemic areas. Diagnosis is confirmed by observation of merozoites on thin film blood smear examined at maximum magnification under oil using Romonovski stains (methylene blue and eosin). This is a routine part of the veterinary examination of dogs and ruminants in regions where babesiosis is endemic.
"Babesia canis" and "B. bigemina" are "large "Babesia" species" that form paired merozoites in the erythrocytes, commonly described as resembling "two pears hanging together", rather than the "Maltese cross" of the "small "Babesia" species". Their merozoites are around twice the size of small ones.
Cerebral babesiosis is suspected "in vivo" when neurological signs (often severe) are seen in cattle that are positive for "B. bovis" on blood smear, but this has yet to be proven scientifically. Outspoken red discoloration of the grey matter "post mortem" further strengthens suspicion of cerebral babesiosis. Diagnosis is confirmed "post mortem" by observation of "Babesia"-infected erythrocytes sludged in the cerebral cortical capillaries in a brain smear.
Diagnosis of PHF is accomplished by measuring antibody titers or PCR testing to look for the bacterium in the blood and feces. However, most veterinarians opt to initiate treatment right away, as the disease can progress quite quickly. Veterinarians may also run complete blood counts and chemistry and electrolyte panels to determine the course of care. Radiographs may be taken to track the progress of laminitic horses.
Doxycycline and minocycline are the medications of choice. For people allergic to antibiotics of the tetracycline class, rifampin is an alternative. Early clinical experience suggested that chloramphenicol may also be effective, however, in vitro susceptibility testing revealed resistance.
Sylvatic plague is most commonly found in prairie dog colonies; the flea that feeds on prairie dogs (and other mammals) serves as the vector for transmission to the new host.
A vaccine is available, called "Chinese Live Attenuated EIA vaccine", developed in China and widely used there since 1983. Another attenuated live virus vaccine is in development in the United States.
Reuse of syringes and needles is a risk factor for transfer of the disease. Currently in the United States, all horses that test positive must be reported to federal authorities by the testing laboratory. EIA-positive horses are infected for life. Options for the horse include sending the horse to a recognized research facility, branding the horse and quarantining it at least 200 yards from other horses for the rest of its life, and euthanizing the horse. Very few quarantine facilities exist, which usually leads to the option of euthanizing the horse. The Florida Research Institute for Equine Nurturing, Development and Safety (a.k.a. F.R.I.E.N.D.S.) is one of the largest such quarantine facilities and is located in south Florida.
The horse industry and the veterinary industry strongly suggest that the risks posed by infected horses, even if they are not showing any clinical signs, are enough of a reason to impose such stringent rules. The precise impacts of the disease on the horse industry are unknown.
The diagnosis of dengue fever may be confirmed by microbiological laboratory testing. This can be done by virus isolation in cell cultures, nucleic acid detection by PCR, viral antigen detection (such as for NS1) or specific antibodies (serology). Virus isolation and nucleic acid detection are more accurate than antigen detection, but these tests are not widely available due to their greater cost. Detection of NS1 during the febrile phase of a primary infection may be greater than 90% sensitive however is only 60–80% in subsequent infections. All tests may be negative in the early stages of the disease. PCR and viral antigen detection are more accurate in the first seven days. In 2012 a PCR test was introduced that can run on equipment used to diagnose influenza; this is likely to improve access to PCR-based diagnosis.
These laboratory tests are only of diagnostic value during the acute phase of the illness with the exception of serology. Tests for dengue virus-specific antibodies, types IgG and IgM, can be useful in confirming a diagnosis in the later stages of the infection. Both IgG and IgM are produced after 5–7 days. The highest levels (titres) of IgM are detected following a primary infection, but IgM is also produced in reinfection. IgM becomes undetectable 30–90 days after a primary infection, but earlier following re-infections. IgG, by contrast, remains detectable for over 60 years and, in the absence of symptoms, is a useful indicator of past infection. After a primary infection, IgG reaches peak levels in the blood after 14–21 days. In subsequent re-infections, levels peak earlier and the titres are usually higher. Both IgG and IgM provide protective immunity to the infecting serotype of the virus. In testing for IgG and IgM antibodies there may be cross-reactivity with other flaviviruses which may result in a false positive after recent infections or vaccinations with yellow fever virus or Japanese encephalitis. The detection of IgG alone is not considered diagnostic unless blood samples are collected 14 days apart and a greater than fourfold increase in levels of specific IgG is detected. In a person with symptoms, the detection of IgM is considered diagnostic.
Sylvatic plague is primarily transmitted among wildlife through flea bites and contact with contaminated fluids or tissue, through predation or scavenging. Humans can contract plague from wildlife through flea bites and handling animal carcasses.
No human vaccine is available for ehrlichiosis. Tick control is the main preventive measure against the disease. However, in late 2012 a breakthrough in the prevention of CME (canine monocytic ehrlichiosis) was announced when a vaccine was accidentally discovered by Prof. Shimon Harrus, Dean of the Hebrew University of Jerusalem's Koret School of Veterinary Medicine.
Treatment of asymptomatic carriers should be considered if parasites are still detected after 3 months. In mild-to-moderate babesiosis, the treatment of choice is a combination of atovaquone and azithromycin. This regimen is preferred to clindamycin and quinine because side effects are fewer. The standard course is 7 to 10 days, but this is extended to at least 6 weeks in people with relapsing disease. Even mild cases are recommended to be treated to decrease the chance of inadvertently transmitting the infection by donating blood. In life-threatening cases, exchange transfusion is performed. In this procedure, the infected red blood cells are removed and replaced with uninfected ones.
Imizol is a drug used for treatment of babesiosis in dogs.
Extracts of the poisonous, bulbous plant "Boophone disticha" are used in the folk medicine of South Africa to treat equine babesiosis. "B. disticha" is a member of the daffodil family Amaryllidaceae and has also been used in preparations employed as arrow poisons, hallucinogens, and in embalming. The plant is rich in alkaloids, some of which display an action similar to that of scopolamine.
The World Health Organization's 2009 classification divides dengue fever into two groups: uncomplicated and severe. This replaces the 1997 WHO classification, which needed to be simplified as it had been found to be too restrictive, though the older classification is still widely used including by the World Health Organization's Regional Office for South-East Asia as of 2011. Severe dengue is defined as that associated with severe bleeding, severe organ dysfunction, or severe plasma leakage while all other cases are uncomplicated. The 1997 classification divided dengue into undifferentiated fever, dengue fever, and dengue hemorrhagic fever. Dengue hemorrhagic fever was subdivided further into grades I–IV. Grade I is the presence only of easy bruising or a positive tourniquet test in someone with fever, grade II is the presence of spontaneous bleeding into the skin and elsewhere, grade III is the clinical evidence of shock, and grade IV is shock so severe that blood pressure and pulse cannot be detected. Grades III and IV are referred to as "dengue shock syndrome".
However, simple husbandry changes and practical midge control measures may help break the livestock infection cycle. Housing livestock during times of maximum midge activity (from dusk to dawn) may lead to significantly reduced biting rates. Similarly, protecting livestock shelters with fine mesh netting or coarser material impregnated with insecticide will reduce contact with the midges. The "Culicoides" midges that carry the virus usually breed on animal dung and moist soils, either bare or covered in short grass. Identifying breeding grounds and breaking the breeding cycle will significantly reduce the local midge population. Turning off taps, mending leaks and filling in or draining damp areas will also help dry up breeding sites. Control by trapping midges and removing their breeding grounds may reduce vector numbers. Dung heaps or slurry pits should be covered or removed, and their perimeters (where most larvae are found) regularly scraped.
Clinically, HGA is essentially indistinguishable from human monocytic ehrlichiosis, the infection caused by "Ehrlichia chaffeensis", and other tick-borne illnesses such as Lyme disease may be suspected. As Ehrlichia serologies can be negative in the acute period, PCR is very useful for diagnosis.
Diagnosis of BMCF depends on a combination of history and symptoms, histopathology and detection in the blood or tissues of viral antibodies by ELISA or of viral DNA by PCR. The characteristic histologic lesions of MCF are lymphocytic arteritis with necrosis of the blood vessel wall and the presence of large T lymphocytes mixed with other cells. The similarity of MCF clinical signs to other enteric diseases, for example blue tongue, mucosal disease and foot and mouth make laboratory diagnosis of MCF important. The world organisation for animal health recognises histopathology as the definitive diagnostic test, but laboratories have adopted other approaches with recent developments in molecular virology. No vaccine has as yet been developed.
While a vaccine is available for PHF, it does not cover all strains of the bacterium, and recent vaccine failures seem to be on the rise. Additionally, the vaccine usually produces a very weak immune response, which may only lessen the severity of the disease rather than prevent it. The vaccine is administered twice a year, in early spring and in early summer, with the first one inoculation given before the mayflies emerge and the second administered as a booster.
Some veterinarians have started making recommendations for farm management to try to prevent this disease:
- Maintaining riparian barriers along bodies of water may encourage aquatic insects to stay near their places of origin
- Turning off outside lights around the barn will prevent insects from being attracted
- Cleaning water buckets and feed areas frequently and keeping food covered will reduce the chance that the horse will accidentally ingest infected insects
Outbreaks in southern Europe have been caused by serotypes 2 and 4, and vaccines are available against these serotypes (ATCvet codes: for sheep, for cattle). However, the disease found in northern Europe (including the UK) in 2006 and 2007 has been caused by serotype 8. Vaccine companies Fort Dodge Animal Health (Wyeth), Merial and Intervet were developing vaccines against serotype 8 (Fort Dodge Animal Health has serotype 4 for sheep, serotype 1 for sheep and cattle and serotype 8 for sheep and cattle) and the associated production facilities. A vaccine for this is now available in the UK, produced by Intervet. Fort Dodge Animal Health has their vaccines available for multiple European Countries (vaccination will start in 2008 in Germany, Belgium, Switzerland, Spain and Italy). However, immunization with any of the available vaccines preclude later serological monitoring of affected cattle populations, a problem which could be resolved using next-generation subunit vaccines currently in development.
In January 2015, Indian researchers launched its vaccine. Named 'Raksha Blu', it will protect the animals against five strains of the ‘bluetongue’ virus prevalent in the country.
Although no specific treatment for acute infection with SuHV1 is available, vaccination can alleviate clinical signs in pigs of certain ages. Typically, mass vaccination of all pigs on the farm with a modified live virus vaccine is recommended. Intranasal vaccination of sows and neonatal piglets one to seven days old, followed by intramuscular (IM) vaccination of all other swine on the premises, helps reduce viral shedding and improve survival. The modified live virus replicates at the site of injection and in regional lymph nodes. Vaccine virus is shed in such low levels, mucous transmission to other animals is minimal. In gene-deleted vaccines, the thymidine kinase gene has also been deleted; thus, the virus cannot infect and replicate in neurons. Breeding herds are recommended to be vaccinated quarterly, and finisher pigs should be vaccinated after levels of maternal antibody decrease. Regular vaccination results in excellent control of the disease. Concurrent antibiotic therapy via feed and IM injection is recommended for controlling secondary bacterial pathogens.
The gold standard for diagnosis is visualization of the amastigotes in splenic aspirate or bone marrow aspirate. This is a technically challenging procedure that is frequently unavailable in areas of the world where visceral leishmaniasis is endemic.
Serological testing is much more frequently used in areas where leishmaniasis is endemic. A 2014 Cochrane review evaluated different rapid diagnostic tests. One of them (the rK39 immunochromatographic test) gave correct, positive results in 92% of the people with visceral leishmaniasis and it gave correct, negative results in 92% of the people who did not have the disease. A second rapid test (called latex agglutination test) gave correct, positive results in 64% of the people with the disease and it gave correct, negative results in 93% of the people without the disease. Other types of tests have not been studied thoroughly enough to ascertain their efficacy.
The K39 dipstick test is easy to perform, and village health workers can be easily trained to use it. The kit may be stored at ambient temperature and no additional equipment needs to be carried to remote areas. The DAT anti-leishmania antigen test, standard within MSF, is much more cumbersome to use and appears not to have any advantages over the K39 test.
There are a number of problems with serological testing: in highly endemic areas, not everyone who becomes infected will actually develop clinical disease or require treatment. Indeed, up to 32% of the healthy population may test positive, but not require treatment. Conversely, because serological tests look for an immune response and not for the organism itself, the test does not become negative after the patient is cured, it cannot be used as a check for cure, or to check for re-infection or relapse. Likewise, patients with abnormal immune systems (e.g., HIV infection) will have false-negative tests.
Other tests being developed include detects erythrosalicylic acid.
Currently, there is no vaccine against human granulocytic anaplasmosis, so antibiotics are the only form of treatment. The best way to prevent HGA is to prevent getting tick bites.
The use of a seven-way clostridial vaccination is the most common, cheapest, and efficacious preventative measure taken against blackleg. Burning the upper layer of soil to eradicate left-over spores is the best way to stop the spread of blackleg from diseased cattle. Diseased cattle should be isolated. Treatment is generally unrewarding due to the rapid progression of the disease, but penicillin is the drug of choice for treatment. Treatment is only effective in the early stages and as a control measure.
Dr. Oliver Morris (O.M.) Franklin made a significant contribution to the welfare of cattle and the livestock industry with his development of the blackleg vaccine. Franklin developed the original method of giving the vaccine while at Kansas State Agriculture College using live cattle. Franklin and another graduate veterinarian founded the original Kansas Blackleg Serum Co. in Wichita in 1916.
In general, specific laboratory tests are not available to rapidly diagnose tick-borne diseases. Due to their seriousness, antibiotic treatment is often justified based on clinical presentation alone.