Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
l-TGA can sometimes be diagnosed in utero with an ultrasound after 18 weeks gestation. However, many cases of simple l-TGA are "accidentally" diagnosed in adulthood, during diagnosis or treatment of other conditions.
d-TGA can sometimes be diagnosed in utero with an ultrasound after 18 weeks gestation. However, if it is not diagnosed in utero, cyanosis of the newborn (blue baby) should immediately indicate that there is a problem with the cardiovascular system. Normally, the lungs are examined first, then the heart is examined if there are no apparent problems with the lungs. These examinations are typically performed using ultrasound, known as an echocardiogram when performed on the heart. Chest x-rays and electrocardiograms (EKG) may also be used in reaching or confirming a diagnosis; however, an x-ray may appear normal immediately following birth. If d-TGA is accompanied by both a VSD and pulmonary stenosis, a systolic murmur will be present.
On the rare occasion (when there is a large VSD with no significant left ventricular outflow tract obstruction), initial symptoms may go unnoticed, resulting in the infant being discharged without treatment in the event of a hospital or birthing center birth, or a delay in bringing the infant for diagnosis in the event of a home birth. On these occasions, a layperson is likely not to recognize symptoms until the infant is experiencing moderate to serious congestive heart failure (CHF) as a result of the heart working harder in a attempt to increase oxygen flow to the body; this overworking of the heart muscle eventually leads to hypertrophy and may result in cardiac arrest if left untreated.
With simple d-TGA, if the foramen ovale and ductus arteriosus are allowed to close naturally, the newborn will likely not survive long enough to receive corrective surgery. With complex d-TGA, the infant will fail to thrive and is unlikely to survive longer than a year if corrective surgery is not performed. In most cases, the patient's condition will deteriorate to the point of inoperability if the defect is not corrected in the first year.
While the foramen ovale and ductus arteriosus are open after birth, some mixing of red and blue blood occurs allowing a small amount of oxygen to be delivered to the body; if ASD, VSD, PFO, and/or PDA are present, this will allow a higher amount of the red and blue blood to be mixed, therefore delivering more oxygen to the body, but can complicate and lengthen the corrective surgery and/or be symptomatic.
Modern repair procedures within the ideal timeframe and without additional complications have a very high success rate.
"Prenatal diagnosis (fetal ultrasound):"
Today the diagnosis of double aortic arch can be obtained in-utero in experienced centers. Scheduled repair soon after birth in symptomatic patients can relieve tracheal compression early and therefore potentially prevent the development of severe tracheomalacia.
"Chest X-ray:"
Plain chest x-rays of patients with double aortic arch may appear normal (often) or show a dominant right aortic arch or two aortic arches . There might be evidence of tracheal deviation and/or compression. Sometimes patients present with radiologic findings of pneumonia.
"Barium swallow (esophagraphy):"
Historically the esophagram used to be the gold standard for diagnosis of double aortic arch. In patients with double aortic arch the esophagus shows left- and right-sided indentations from the vascular compression. Due to the blood-pressure related movement of the aorta and the two arches, moving images of the barium-filled esophagus can demonstrate the typical pulsatile nature of the obstruction. The indentation from a dominant right arch is usually deeper and higher compared to the dent from the left arch.
"Bronchoscopy:"
Although bronchoscopy is not routinely done in patients with suspected or confirmed double aortic arch, it can visualize sites and severity of pulsatile tracheal compression.
"Echocardiography:"
In babies under the age of 12 months, echocardiography is considered to be sensitive and specific in making the diagnosis of double aortic arch when both arches are open. Non-perfused elements of other types of vascular rings (e.g. left arch with atretic (closed) end) or the ligamentum arteriosum might be difficult to visualize by echocardiography.
"Computed tomography (CT):"
Computed tomography after application of contrast media is usually diagnostically accurate. It shows the relationship of the arches to the trachea and bronchi.
"Magnetic resonance imaging (MRI):"
Magnetic resonance imaging provides excellent images of the trachea and surrounding vascular structures and has the advantage of not using radiation for imaging compared to Computed tomography.
"Cardiac catherization/aortography:"
Today patients with double aortic arch usually only undergo cardiac catherization to evaluate the hemodynamics and anatomy of associated congenital cardiac defects. Through a catheter in the ascending aorta contrast media is injected and the resulting aortography may be used to delineate the anatomy of the double aortic arch including sites of narrowing in the left aortic arch. Aortography can also be used to visualize the origin of all head and arm vessels originating from the two arches.
Simple l-TGA has a very good prognosis, with many individuals being asymptomatic and not requiring surgical correction.
In a number of cases, the (technically challenging) "double switch operation" has been successfully performed to restore the normal blood flow through the ventricles.
Surgical correction is indicated in all double aortic arch patients with obstructive symptoms (stridor, wheezing, pulmonary infections, poor feeding with choking). If symptoms are absent a conservative approach (watchful waiting) can be reasonable. Children with very mild symptoms may outgrow their symptoms but need regular follow-up.
On chest X-ray, transposition of the great vessels typically shows a cardio-mediastinal silhouette appearing as an ""egg on a string"", wherein in which the enlarged heart represents an egg on its side and the narrowed, atrophic thymus of the superior mediastinum represents the string.
For newborns with transposition, prostaglandins can be given to keep the ductus arteriosus open which allows mixing of the otherwise isolated pulmonary and systemic circuits. Thus oxygenated blood that recirculates back to the lungs can mix with blood that circulates throughout the body. The arterial switch operation is the definitive treatment for dextro- transposition. Rarely the arterial switch is not feasible due to particular coronary artery anatomy and an atrial switch operation is preferred.
DORV affects between 1% and 3% of people born with congenital heart defects.
Chromosomal abnormalities were reported in about 40% of reported cases in the medical literature.
Taussig–Bing syndrome (after Helen B. Taussig and Richard Bing) is a cyanotic congenital heart defect in which the patient has both double outlet right ventricle (DORV) and subpulmonic ventricular septal defect (VSD).
In DORV, instead of the normal situation where blood from the left ventricle (LV) flows out to the aorta and blood from the right ventricle (RV) flows out to the pulmonary artery, both aorta and pulmonary artery are connected to the RV, and the only path for blood from the LV is across the VSD. When the VSD is subpulmonic (sitting just below the pulmonary artery), the LV blood then flows preferentially to the pulmonary artery. Then the RV blood, by default, flows mainly to the aorta.
The clinical manifestations of a Taussig-Bing anomaly, therefore, are much like those of dextro-Transposition of the great arteries (but the surgical repair is different). It can be corrected surgically also with the arterial switch operation (ASO).
It is managed with Rastelli procedure.
Left to right shunting heart defects include:
- Ventricular septal defect (VSD) (30% of all congenital heart defects)
- Atrial septal defect (ASD)
- Atrioventricular septal defect (AVSD)
- Patent ductus arteriosus (PDA)
- Previously, Patent ductus arteriosus (PDA) was listed as acyanotic but in actuality it can be cyanotic due to pulmonary hypertension resulting from the high pressure aorta pumping blood into the pulmonary trunk, which then results in damage to the lungs which can then result in pulmonary hypertension as well as shunting of blood back to the right ventricle. This consequently results in less oxygenation of blood due to alveolar damage as well as oxygenated blood shunting back to the right side of the heart, not allowing the oxygenated blood to pass through the pulmonary vein and back to the left atrium.
- (Edit - this is called Eisenmenger's syndrome and can occur with Atrial septal defect and ventricular septal defect as well (actually more common in ASD and VSD) therefore PDA can still be listed as acyanotic as, acutely, it is)
Others:
- levo-Transposition of the great arteries (l-TGA)
Acyanotic heart defects without shunting include:
- Pulmonary stenosis (a narrowing of the pulmonary valve)
- Aortic stenosis
- Coarctation of the aorta
An acyanotic heart defect, also known as non-cyanotic heart defect, is a class of congenital heart defects. In these, blood is shunted (flows) from the left side of the heart to the right side of the heart due to a structural defect (hole) in the interventricular septum. People often retain normal levels of oxyhemoglobin saturation in systemic circulation.
This term is outdated, because a person with an acyanotic heart defect may show cyanosis (turn blue due to insufficient oxygen in the blood).
DORV occurs in multiple forms, with variability of great artery position and size, as well as of ventricular septal defect (VSD) location. It can occur with or without transposition of the great arteries. The clinical manifestations are similarly variable, depending on how the anatomical defects affect the physiology of the heart, in terms of altering the normal flow of blood from the RV and left ventricle (LV) to the aorta and pulmonary artery. For example:
According to a study in cyanotic congenital heart disease (CCHD) in Sohag University, Upper Egypt. 50 neonates were diagnosed as suffering from cyanotic congenital heart disease (CCHD), they concluded that cyanotic congenital heart disease (CCHD) frequency was significant (9.5%) with D-TGA being the commonest type. Majority of neonates with Cyanotic congenital heart disease (CCHD) showed survival with suitable management.
Cyanotic heart defect is a group-type of congenital heart defect (CHD) that occurs due to deoxygenated blood bypassing the lungs and entering the systemic circulation or a mixture of oxygenated and unoxygenated blood entering the systemic circulation. It is caused by structural defects of the heart (i.e.: right-to-left, bidirectional shunting, malposition of the great arteries), or any condition which increases pulmonary vascular resistance. The result being the development of collateral circulation.
Causality assessment is used to determine the likelihood that a drug caused a suspected ADR. There are a number of different methods used to judge causation, including the Naranjo algorithm, the Venulet algorithm and the WHO causality term assessment criteria. Each have pros and cons associated with their use and most require some level of expert judgement to apply.
An ADR should not be labeled as 'certain' unless the ADR abates with a challenge-dechallenge-rechallenge protocol (stopping and starting the agent in question). The chronology of the onset of the suspected ADR is important, as another substance or factor may be implicated as a cause; co-prescribed medications and underlying psychiatric conditions may be factors in the ADR.
Assigning causality to a specific agent often proves difficult, unless the event is found during a clinical study or large databases are used. Both methods have difficulties and can be fraught with error. Even in clinical studies some ADRs may be missed as large numbers of test individuals are required to find that adverse drug reaction. Psychiatric ADRs are often missed as they are grouped together in the questionnaires used to assess the population.
There have been assertions of a possible link between TGA and the use of statins (a class of drug used in treating cholesterol).
En bloc memory loss which is total, permanent, and irrecoverable can occur as an alcoholic "black out," usually lasting longer than an hour and up to 2–5 days.
Marijuana intoxication, Halogenated hydroxyquinolines such as Clioquinol, PDE inhibitors such as sildenafil, Digitalis and scopolamine intoxication, and general anaesthesia have been reported with TGA.
Many countries have official bodies that monitor drug safety and reactions. On an international level, the WHO runs the Uppsala Monitoring Centre, and the European Union runs the European Medicines Agency (EMEA). In the United States, the Food and Drug Administration (FDA) is responsible for monitoring post-marketing studies.
In Canada, the Marketed Health Products Directorate of Health Canada is responsible for the surveillance of marketed health products. In Australia, the Therapeutic Goods Administration (TGA) conducts postmarket monitoring of therapeutic products.
The prognosis of "pure" TGA is very good. It does not affect mortality or morbidity and unlike earlier understanding of the condition, TGA is not a risk factor for stroke or ischemic disease. Rates of recurrence are variously reported, with one systematic calculation suggesting the rate is under 6% per year. TGA "is universally felt to be a benign condition which requires no further treatment other than reassurance to the patient and his or her family."
"The most important part of management after diagnosis is looking after the psychological needs of the patient and his or her relatives. Seeing a once competent and healthy partner, sibling or parent become incapable of remembering what was said only a minute ago is very distressing, and hence it is often the relatives who will require reassurance."
TGA may have multiple etiologies and prognoses. Atypical presentations may masquerade as epilepsy and be more properly considered TEA. In addition to such probable TEA cases, some people experiencing amnestic events diverging from the diagnostic criteria articulated above may have a less benign prognosis than those with "pure" TGA.
Recently, moreover, both imaging and neurocognitive testing studies question whether TGA is as benign as has been thought. MRI scans of the brain in one study showed that among people who had experienced TGA, all had cavities in the hippocampus, and these cavities were far more numerous, larger, and more suggestive of pathological damage than in either healthy controls or a large control group of people with tumor or stroke. Verbal and cognitive impairments have been observed days after TGA attacks, of such severity that the researchers estimated the effects would be unlikely to resolve within a short time frame. A large neurocognitive study of patients more than a year after their attack has shown persistent effects consistent with amnestic mild cognitive impairment (MCI-a) in a third of the people who had experienced TGA. In another study, "selective cognitive dysfunctions after the clinical recovery" were observed, suggesting a prefrontal impairment. These dysfunctions may not be in memory "per se" but in retrieval, in which speed of access is part of the problem among people who have had TGA and experience ongoing memory problems.
There is debate as to the benefits of screening. Some studies suggest that early detection would decrease the risk of osteoporosis and anaemia. In contrast, a cohort study suggested that people with undetected coeliac disease had a beneficial risk profile for cardiovascular disease (less overweight, lower cholesterol levels). There is limited evidence that screen-detected cases benefit from a diagnosis in terms of morbidity and mortality; hence, population-level screening is not presently thought to be beneficial.
The United States Preventive Services Task Force found insufficient evidence to make a recommendation among those without symptoms. In the United Kingdom, the National Institute for Health and Clinical Excellence (NICE) recommends testing for coeliac disease in people with newly diagnosed chronic fatigue syndrome and irritable bowel syndrome, as well as in type 1 diabetics, especially those with insufficient weight gain or unexplained weight loss. It is also recommended in autoimmune thyroid disease, dermatitis herpetiformis, and in the first-degree relatives of those with confirmed coeliac disease.
Serology has been proposed as a screening measure, because the presence of antibodies would detect some previously undiagnosed cases of coeliac disease and prevent its complications in those people. However, serologic tests have high sensitivity only in people with total villous atrophy and have very low ability to detect cases with partial villous atrophy or minor intestinal lesions. Testing for coeliac disease may be offered to those with commonly associated conditions.
Trinucleotide repeat disorders (also known as trinucleotide repeat expansion disorders, triplet repeat expansion disorders or codon reiteration disorders) are a set of genetic disorders caused by trinucleotide repeat expansion, a kind of mutation where repeats in certain genes or introns exceed the normal, stable threshold, which differs per gene. The mutation is a subset of unstable microsatellite repeats that occur throughout all genomic sequences. If the repeat is present in a healthy gene, a dynamic mutation may increase the repeat count and result in a defective gene. If the repeat is present in an intron it can cause toxic effects by forming spherical clusters called RNA foci in cell nuclei.
Trinucleotide repeats are sometimes classified as insertion mutations and sometimes as a separate class of mutations.
Since the early 1990s, a new class of molecular disease has been characterized based upon the presence of unstable and abnormal expansions of DNA-triplets (trinucleotides). The first triplet disease to be identified was fragile X syndrome, which has since been mapped to the long arm of the X chromosome. At this point, there are from 230 to 4000 CGG repeats in the gene that causes fragile X syndrome in these patients, as compared with 60 to 230 repeats in carriers and 5 to 54 repeats in unaffected individuals. The chromosomal instability resulting from this trinucleotide expansion presents clinically as intellectual disability, distinctive facial features, and macroorchidism in males. The second, related DNA-triplet repeat disease, fragile X-E syndrome, was also identified on the X chromosome, but was found to be the result of an expanded CGG repeat. Identifying trinucleotide repeats as the basis of disease has brought clarity to our understanding of a complex set of inherited neurological diseases.
As more repeat expansion diseases have been discovered, several categories have been established to group them based upon similar characteristics. Category I includes Huntington's disease (HD) and the spinocerebellar ataxias that are caused by a CAG repeat expansion in protein-coding portions of specific genes. Category II expansions tend to be more phenotypically diverse with heterogeneous expansions that are generally small in magnitude, but also found in the exons of genes. Category III includes fragile X syndrome, myotonic dystrophy, two of the spinocerebellar ataxias, juvenile myoclonic epilepsy, and Friedreich's ataxia. These diseases are characterized by typically much larger repeat expansions than the first two groups, and the repeats are located outside of the protein-coding regions of the genes.
Although blood antibody tests, biopsies, and genetic tests usually provide a clear diagnosis, occasionally the response to gluten withdrawal on a gluten-free diet is needed to support the diagnosis. Currently, gluten challenge is no longer required to confirm the diagnosis in patients with intestinal lesions compatible with coeliac disease and a positive response to a gluten-free diet. Nevertheless, in some cases, a gluten challenge with a subsequent biopsy may be useful to support the diagnosis, for example in people with a high suspicion for coeliac disease, without a biopsy confirmation, who have negative blood antibodies and are already on a gluten-free diet. Gluten challenge is discouraged before the age of 5 years and during pubertal growth. The alternative diagnosis of non-coeliac gluten sensitivity may be made where there is only symptomatic evidence of gluten sensitivity. Gastrointestinal and extraintestinal symptoms of people with non-coeliac gluten sensitivity can be similar to those of coeliac disease, and improve when gluten is removed from the diet, after coeliac disease and wheat allergy are reasonably excluded.
Up to 30% of people often continue having or redeveloping symptoms after starting a gluten-free diet. A careful interpretation of the symptomatic response is needed, as a lack of response in a person with coeliac disease may be due to continued ingestion of small amounts of gluten, either voluntary or inadvertent, or be due to other commonly associated conditions such as small intestinal bacterial overgrowth (SIBO), lactose intolerance, fructose, sucrose, and sorbitol malabsorption, exocrine pancreatic insufficiency, and microscopic colitis, among others. In untreated coeliac disease, these are often transient conditions derived from the intestinal damage. They normally revert or improve several months after starting a gluten-free diet, but may need temporary interventions such as supplementation with pancreatic enzymes, dietary restrictions of lactose, fructose, sucrose or sorbitol containing foods, or treatment with oral antibiotics in the case of associated bacterial overgrowth. In addition to gluten withdrawal, some people need to follow a low-FODMAPs diet or avoid consumption of commercial gluten-free products, which are usually rich in preservatives and additives (such as sulfites, glutamates, nitrates and benzoates) and which might have a role in triggering functional gastrointestinal symptoms.
A survey of 1.1 million residents in the United States found that those that reported sleeping about 7 hours per night had the lowest rates of mortality, whereas those that slept for fewer than 6 hours or more than 8 hours had higher mortality rates. Getting 8.5 or more hours of sleep per night was associated with a 15% higher mortality rate. Severe insomnia – sleeping less than 3.5 hours in women and 4.5 hours in men – is associated with a 15% increase in mortality.
With this technique, it is difficult to distinguish lack of sleep caused by a disorder which is also a cause of premature death, versus a disorder which causes a lack of sleep, and the lack of sleep causing premature death. Most of the increase in mortality from severe insomnia was discounted after controlling for co-morbid disorders. After controlling for sleep duration and insomnia, use of sleeping pills was also found to be associated with an increased mortality rate.
The lowest mortality was seen in individuals who slept between six and a half and seven and a half hours per night. Even sleeping only 4.5 hours per night is associated with very little increase in mortality. Thus, mild to moderate insomnia for most people is associated with increased longevity and severe insomnia is associated only with a very small effect on mortality. It is unclear why sleeping longer than 7.5 hours is associated with excess mortality.
In medicine, insomnia is widely measured using the Athens insomnia scale. It is measured using eight different parameters related to sleep, finally represented as an overall scale which assesses an individual's sleep pattern.
A qualified sleep specialist should be consulted for the diagnosis of any sleep disorder so the appropriate measures can be taken. Past medical history and a physical examination need to be done to eliminate other conditions that could be the cause of insomnia. After all other conditions are ruled out a comprehensive sleep history should be taken. The sleep history should include sleep habits, medications (prescription and non-prescription), alcohol consumption, nicotine and caffeine intake, co-morbid illnesses, and sleep environment. A sleep diary can be used to keep track of the individual's sleep patterns. The diary should include time to bed, total sleep time, time to sleep onset, number of awakenings, use of medications, time of awakening and subjective feelings in the morning. The sleep diary can be replaced or validated by the use of out-patient actigraphy for a week or more, using a non-invasive device that measures movement.
Workers who complain of insomnia should not routinely have polysomnography to screen for sleep disorders. This test may be indicated for patients with symptoms in addition to insomnia, including sleep apnea, obesity, a thick neck diameter, or high-risk fullness of the flesh in the oropharynx. Usually, the test is not needed to make a diagnosis, and insomnia especially for working people can often be treated by changing a job schedule to make time for sufficient sleep and by improving sleep hygiene.
Some patients may need to do an overnight sleep study to determine if insomnia is present. Such a study will commonly involve assessment tools including a polysomnogram and the multiple sleep latency test. Specialists in sleep medicine are qualified to diagnose disorders within the, according to the ICSD, 81 major sleep disorder diagnostic categories. Patients with some disorders, including delayed sleep phase disorder, are often mis-diagnosed with primary insomnia; when a person has trouble getting to sleep and awakening at desired times, but has a normal sleep pattern once asleep, a circadian rhythm disorder is a likely cause.
In many cases, insomnia is co-morbid with another disease, side-effects from medications, or a psychological problem. Approximately half of all diagnosed insomnia is related to psychiatric disorders. In depression in many cases "insomnia should be regarded as a co-morbid condition, rather than as a secondary one;" insomnia typically predates psychiatric symptoms. "In fact, it is possible that insomnia represents a significant risk for the development of a subsequent psychiatric disorder." Insomnia occur in between 60% and 80% of people with depression. This may partly be due to treatment used for depression.
Determination of causation is not necessary for a diagnosis.