Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A team of doctors in Australia have trial tested the drug rapamycin in the treatment of a patient said to have Proteus syndrome and have found it to be an effective remedy. However, the diagnosis of Proteus syndrome in this patient has been questioned by others.
The Proteus syndrome research team in the National Human Genome Research Institute at the United States National Institutes of Health have initiated a Phase 0 dose finding trial with the AKT1 inhibitor ARQ 092, which is being developed by the Arqule Corporation. In earlier tests on tissue and cell samples obtained from patients, ARQ 092 reduced phosphorylation of AKT and downstream targets of AKT in as little as two hours. The Phase 0 trial opened in November 2015 and recruited patients in a study titled "Dose Finding Trial of ARQ 092 in Children and Adults With Proteus Syndrome" This trial is based on in vitro data showing inhibition of AKT1 in cell lines from patients with Proteus syndrome.
Detection usually begins with a routine doctor visit when the fundal height is being measured or during an ultrasound examination. When large for gestational age fetuses (LGA) are identified, there are two common causes: maternal diabetes or incorrect dates. However, if these two causes can be ruled out, an ultrasound is performed to detect for overgrowth and other abnormalities. At this point, it becomes essential for a clinical geneticist to assist in the correct selection of tests and possible diagnosis.
First signs of SGBS may be observed as early as 16 weeks of gestation. Aids to diagnosing might include the presence of macrosomia, polyhydramnios, elevated maternal serum-α-fetoprotein, cystic hygroma, hydrops fetalis, increased nuchal translucency, craniofacial abnormalities, visceromegaly, renal abnormalities, congenital diaphragmatic hernia, polydactyly, and a single umbilical artery.
If there is a known mutation in the family, prenatal testing is available. Prenatal testing is also possible by looking for evidence of the mild SGBS phenotype in the mother and the positive SGBS phenotype in male family members. Family members who are positive of SGBS may undergo mutational analysis of genes GCP3, GCP4, and CXORF5. Genomic balance in Xp22 and Xq26 may also be analyzed through array comparative genomic hybridization.
Due to the high percentage of male deaths during the neonatal period, early detection of tumors is crucial. In order to detect the presence of tumors, screening in SGBS patients should include abdominal ultrasound, urinalysis, and biochemical markers that screen for embryonic tumors.
Once the infant is born, possibility of hypoglycemia must be assessed along with cardiac, genitalia, liver, and adrenal evaluations. Such tests include chest radiographs, electrocardiogram, echocardiogram, renal sonography, and abdominal sonography to test for possible abnormalities.
Since the syndrome is caused by a genetic mutation in the individual's DNA, a cure is not available. Treatment of the symptoms and management of the syndrome, however, is possible.
Depending on the manifestation, surgery, increased intake of glucose, special education, occupational therapy, speech therapy, and physical therapy are some methods of managing the syndrome and associated symptoms.
In terms of diagnosing Bannayan–Riley–Ruvalcaba syndrome there is no current method outside the physical characteristics that may be present as signs/symptoms. There are, however, multiple molecular genetics tests (and cytogenetic test) to determine Bannayan–Riley–Ruvalcaba syndrome.
The diagnosis of Perlman syndrome is based on observed phenotypic features and confirmed by histological examination of the kidneys. Prenatal diagnosis is possible for families that have a genetic disposition for Perlman syndrome although there is no conclusive laboratory test to confirm the diagnosis. Fetal overgrowth, particularly with an occipitofrontal circumference (OFC) greater than the 90th centile for gestational age, as well as an excess of amniotic fluid in the amniotic sac (polyhydramnios), may be the first signs of Perlman. Using ultrasound diagnosis, Perlman syndrome has been detected at 18 weeks. During the first trimester, the common abnormalities of the syndrome observed by ultrasound include cystic hygroma and a thickened nuchal lucency. Common findings for the second and third trimesters include macrosomia, enlarged kidneys, renal tumors (both hamartoma and Wilms), cardiac abnormalities and visceromegaly.
Prompt recognition and identification of the disorder along with accurate follow-up and clinical assistance is recommended as the prognosis for Perlman is severe and associated with a high neonatal death rate.
Because MOMO is such a rare disorder, very few studies have been conducted into its causes. Current research suggests that it is linked to a de novo (new) autosomal dominant mutation.
Many sources classify Proteus syndrome to be a type of nevus syndrome. The lesions appear to be distributed in a mosaic manner. It has been confirmed that the disorder is an example of genetic mosaicism.
After the first discovery and description of Marshall–Smith syndrome in 1971, research to this rare syndrome has been carried out.
- Adam, M., Hennekam, R.C.M., Butler, M.G., Raf, M., Keppen, L., Bull, M., Clericuzio, C., Burke, L., Guttacher, A., Ormond, K., & Hoyme, H.E. (2002). Marshall–Smith syndrome: An osteochondrodysplasia with connective tissue abnormalities. 23rd Annual David W. Smith Workshop on Malformations and Morphogenesis, August 7, Clemson, SC.
- Adam MP, Hennekam RC, Keppen LD, Bull MJ, Clericuzio CL, Burke LW, Guttmacher AE, Ormond KE and Hoyme HE: Marshall-Smith Syndrome: Natural history and evidence of an osteochondrodysplasia with connective tissue abnormalities. American Journal of Medical Genetics 137A:117–124, 2005.
- Baldellou Vazquez A, Ruiz-Echarri Zelaya MP, Loris Pablo C, Ferr#{225}ndez Longas A, Tamparillas Salvador M. El sIndrome de Marshall-Smith: a prop#{243}sito de una observad#{243}n personal. An Esp Pediatr 1983; 18:45-50.
- Butler, M.G. (2003). Marshall–Smith syndrome. In: The NORD Guide to Rare Disorders. (pp219–220) Lippincott, Williams & Wilkins, Philadelphia, PA.
- Charon A, Gillerot T, Van Maldergem L, Van Schaftingen MH, de Bont B, Koulischer L. The Marshall–Smith syndrome. Eur J Pediatr 1990; 150: 54-5.
- Dernedde, G., Pendeville, P., Veyckemans, F., Verellen, G. & Gillerot, Y. (1998). Anaesthetic management of a child with Marshall–Smith syndrome. Canadian Journal of Anesthesia. 45 (7): 660. Anaesthetic management of a child with Marshall-Smith syndrome
- Diab, M., Raff, M., Gunther, D.F. (2002). Osseous fragility in Marshall–Smith syndrome. Clinical Report: Osseous fragility in Marshall-Smith syndrome
- Ehresmann, T., Gillessen-Kaesbach G., Koenig R. (2005). Late diagnosis of Marshall Smith Syndrome (MSS). In: Medgen 17.
- Hassan M, Sutton T, Mage K, LimalJM, Rappaport R. The syndrome of accelerated bone maturation in the newborn infant with dysmorphism and congenital malformations: (the so-called Marshall–Smith syndrome). Pediatr Radiol 1976; 5:53-57.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. Western Society for Pediatric Research, Carmel, California, February, 1987. Clin Res 35:68A, 1987.
- Hoyme HE and Bull MJ: The Marshall-Smith Syndrome: Natural history beyond infancy. David W. Smith Morphogenesis and Malformations Workshop. Greenville, SC, August, 1987. Proceedings of the Greenwood Genetics Center 7:152, 1988.
- Hoyme HE, Byers PH, Guttmacher AE: Marshall–Smith syndrome: Further evidence of an osteochondrodysplasia in long-term survivors. David W. Smith Morphogenesis and Malformations Workshop, Winston-Salem, NC, August, 1992. Proceedings of the Greenwood Genetic Center 12:70, 1993.
- .
- Tzu-Jou Wang (2002). Marshall–Smith syndrome in a Taiwanese patient with T-cell immunodeficiency. Am J Med Genet Part A;112 (1):107-108.
The diagnosis is based on observing the patient and finding the constellation of symptoms and signs described above. A few blood tests help, by showing signs of long standing inflammation. There is no specific test for the disease, though now that the gene that causes the disease is known, that may change.
Routine laboratory investigations are non specific: anaemia, increased numbers of polymorphs, an elevated erythrocyte sedimentation rate and elevated concentrations of C-reactive protein are typically all the abnormalities found. Lumbar puncture shows elevated levels of polymorphs (20-70% of cases) and occasionally raised eosinophil counts (0-30% of cases). CSF neopterin may be elevated.
The X ray changes are unique and charactistic of this syndrome. These changes include bony overgrowth due to premature ossification of the patella and the long bone epiphyses in very young children and bowing of long bones with widening and shortening periosteal reaction in older ones.
Audiometry shows a progressive sensineural deafness. Visual examination shows optic atrophy and an increase in the blind spot. CT is usually normal but may show enlargement of the ventricles. MRI with contrast may show enhancement of leptomeninges and cochlea consistent with chronic meningitis. EEG shows is non specific with slow waves and spike discharges.
Polymorphs tend to show increased expression of CD10.
Still's disease does not affect children under 6 months old.
Hyperimmunoglobulin D syndrome in 50% of cases is associated with mevalonate kinase deficiency which can be measured in the leukocytes.
Marshall–Smith syndrome is not to be confused with:
- Marshall syndrome (aka.Periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA syndrome, see also: Periodic fever syndrome)
- Sotos (like) syndrome
- Weaver-Smith syndrome (WSS)
With appropriate treatment and management, patients with Weaver syndrome appear to do well, both physically and intellectually, throughout their life and have a normal lifespan. Their adult height is normal as well.
Sotos syndrome is not a life-threatening disorder and patients may have a normal life expectancy. Developmental delays may improve in the school-age years; however, coordination problems may persist into adulthood, along with any learning disabilities and/or other physical or mental issues.
In terms of treatment/management one should observe what signs or symptoms are present and therefore treat those as there is no other current guideline. The affected individual should be monitored for cancer of:
- Thyroid
- Breast
- Renal
Perlman syndrome shares clinical overlaps with other overgrowth disorders, with similarities to Beckwith–Wiedemann syndrome and Simpson-Golabi-Behmel syndrome having been particularly emphasized in scientific study. Similarities with Beckwith-Wiedemann syndrome include polyhydramnios, macrosomia, nephromegaly and hypoglycaemia. It is the distinctive facial dysmorphology of Perlman, including deep-set eyes, depressed nasal bridge, everted upper lip, and macrocephaly which allows the two conditions to be distinguished from one another. Diagnosis of Perlman syndrome also overlaps with other disorders associated with Wilms tumor, namely, Sotos syndrome and Weaver syndrome.
There is no cure available for Weaver syndrome. However, with multidisciplinary management such as neurological, pediatric, orthopedic, and psychomotor care and genetic counseling, symptoms can be managed. Surgery may be used to correct any skeletal issues. Physical and occupational therapy are considered an option to help with muscle tone. Also, speech therapy is often recommended for speech related problems.
Making a correct diagnosis for a genetic and rare disease is often times very challenging. So the doctors and other healthcare professions rely on the person’s medical history, the severity of the symptoms, physical examination and lab tests to make and confirm a diagnosis.
There is a possibility of interpreting the symptoms of PWS with other conditions such as AVMs and or AVFs. This is because AVMs and AVFs also involve the characteristic overgrowth in soft tissue, bone and brain. Also PWS can be misdiagnosed with Klippel–Trenaunay syndrome (KTS). However, KTS consists of the following: triad capillary malformation, venous malformation, and lymphatic malformation.
Usually a specific set of symptoms such as capillary and arteriovenous malformations occur together and this is used to distinguish PWS from similar conditions. Arteriovenous malformations (AVMs) and arteriovenous fistulas (AVFs) are caused by RASA1 mutations as well. Therefore, if all the other tests (discussed below) fail to determine PWS, which is highly unlikely, genetic testing such as sequence analysis and gene-targeted deletion/duplication analysis can be performed to identify possible RASA1 gene mutations.
But PWS can be distinguished from other conditions because of its defining port-wine stains that are large, flat and pink. The port-wine stains and physical examination are enough to diagnose PWS. But additional testing is necessary to determine the extent of the PWS syndrome. The following tests may be ordered by physicians to help determine the appropriate next steps: MRI, ultrasound, CT/CAT scan, angiogram, and echocardiogram.
MRI: This is a high-resolution scan that is used to identify the extent of the hypertrophy or overgrowth of the tissues. This can also be used to identify other complications that may arise a result of hypertrophy.
Ultrasound: this can be necessary to examine the vascular system and determine how much blood is actually flowing through the AVMs.
CT/CAT scan: this scan is especially useful for examining the areas affected by PWS and is helpful for evaluating the bones in the overgrown limb.
Angiogram: an angiogram can also be ordered to get a detailed look at the blood vessels in the affected or overgrown limb. In this test an interventional radiologist injects a dye into the blood vessels that will help see how the blood vessels are malformed.
Echocardiogram: depending on the intensity of the PWS syndrome, an echo could also be ordered to check the condition of the heart.
And PWS often requires a multidisciplinary care. Depending on the symptoms, patients are dependent on: dermatologists, plastic surgeons, general surgeons, interventional radiologists, orthopedists, hematologists, neurosurgeons, vascular surgeons and cardiologists. Since the arteriovenous and capillary malformations cannot be completely reconstructed and depending on the extent and severity of the malformations, these patients may be in the care of physicians for their entire lives.
Nevo Syndrome is considered to be a rare disorder. Since its first appearance in 1974, only a handful of cases have been reported. Studies have shown showing similarities between Nevo Syndrome with Ehlers-Danlos syndrome as well as Sotos syndrome. There is an astounding overlap of phenotypic manifestations between Nevo Syndrome and the more frequent Sotos syndrome, which are both caused by the NSD1 deletion. Sotos syndrome is an autosomal dominant condition associated with learning disabilities, a distinctive facial appearance, and overgrowth. Studies have shown an overwhelming occurrence (half of those involved in the study) of Nevo syndrome in those individuals of Middle-Eastern descent.
MOMO syndrome is an extremely rare genetic disorder which belongs to the overgrowth syndromes and has been diagnosed in only six cases around the world, and occurs in 1 in 100 million births. The name is an acronym of the four primary aspects of the disorder: Macrosomia (excessive birth weight), Obesity, Macrocephaly (excessive head size) and Ocular abnormalities. It is unknown if it is a life-limiting condition. MOMO syndrome was first diagnosed in 1993 by Professor Célia Priszkulnik Koiffmann, a Brazilian researcher in the Genetic and Clinical Studies of neurodevelopmental disorders.
This syndrome's acronym is an intended pun. It refers to the traditionally tall and obese king of Carnivals, Momus—Rei Momo in Portuguese.
Treatment is symptomatic. There is no standard course of treatment for Sotos syndrome.
Kosaki overgrowth syndrome (KOGS) is a rare (27 cases reported by 2017) syndrome caused by mutations in the PDGFRB gene.
The causes for PWS are either genetic or unknown. Some cases are a direct result of the RASA1 gene mutations. And individuals with RASA1 can be identified because this genetic mutation always causes multiple capillary malformations. PWS displays an autosomal dominant pattern of inheritance. This means that one copy of the damaged or altered gene is sufficient to elicit PWS disorder. In most cases, PWS can occur in people that have no family history of the condition. In such cases the mutation is sporadic. And for patients with PWS with the absence of multiple capillary mutations, the causes are unknown.
According to Boston’s Children Hospital, no known food, medications or drugs can cause PWS during pregnancy. PWS is not transmitted from person to person. But it can run in families and can be inherited. PWS effects both males and females equally and as of now no racial predominance is found
At the moment, there are no known measures that can be taken in order to prevent the onset of the disorder. But Genetic Testing Registry can be great resource for patients with PWS as it provides information of possible genetic tests that could be done to see if the patient has the necessary mutations. If PWS is sporadic or does not have RASA1 mutation then genetic testing will not work and there is not a way to prevent the onset of PWS.
At the 2005 American Society of Human Genetics meeting, Francis Collins gave a presentation about a treatment he devised for children affected by Progeria. He discussed how farnesyltransferase inhibitor (FTI) affects H-Ras. After his presentation, members of the Costello Syndrome Family Network discussed the possibility of FTIs helping children with Costello syndrome. Mark Kieran, who presented at the 1st International Costello Syndrome Research Symposium in 2007, agreed that FTIs might help children with Costello syndrome. He discussed with Costello advocates what he had learned in establishing and running the Progeria clinical trial with an FTI, to help them consider next steps.
Another medication that affects H-Ras is Lovastatin, which is planned as a treatment for neurofibromatosis type I. When this was reported in mainstream news, the Costello Syndrome Professional Advisory Board was asked about its use in Costello Syndrome. Research into the effects of Lovastatin was linked with Alcino Silva, who presented his findings at the 2007 symposium. Silva also believed that the medication he was studying could help children with Costello syndrome with cognition.
A third medication that might help children with Costello syndrome is a MEK inhibitor that helps inhibit the pathway closer to the cell nucleus.
Because CAPS is extremely rare and has a broad clinical presentation, it is difficult to diagnose, and a significant delay exists between symptom onset and definitive diagnosis. There are currently no clinical or diagnostic criteria for CAPS based solely on clinical presentation. Instead, diagnosis is made by genetic testing for "NLRP3" mutations. Acute phase reactants and white blood cell count are usually persistently elevated, but this is aspecific for CAPS.
Nevo Syndrome is an autosomal recessive disorder. Most times in which a child is afflicted with Nevo Syndrome, both their parents are of average height and weight. It is only until after birth when the characteristic physical traits associated with disease are manifested, and the disorder is actually diagnosed. One study showed that despite the increased growth rates, the patient was completely healthy up until age 6, when he was admitted into the hospital. Nevo syndrome is usually associated with early childhood fatality. Children with Nevo Syndrome have a high occurrence of death due to cardiac arrest because their developing hearts cannot keep up with their overgrown body.