Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
DMD is carried by an X-linked recessive gene. Males have only one X chromosome, so one copy of the mutated gene will cause DMD. Fathers cannot pass X-linked traits on to their sons, so the mutation is transmitted by the mother.
If the mother is a carrier, and therefore one of her two X chromosomes has a DMD mutation, a 50% chance exists that a female child will inherit that mutation as one of her two X chromosomes, and be a carrier. If that carrier has a male child, there is a 50% chance that he will inherit the X chromosome with the mutation, and will have DMD. Prenatal tests can tell whether the unborn child has the most common mutations. Many mutations are responsible for DMD, and some have not been identified, so genetic testing only works when family members with DMD have an identified mutation.
Prior to invasive testing, determination of the fetal sex is important; while males are sometimes affected by this X-linked disease, female DMD is extremely rare. This can be achieved by ultrasound scan at 16 weeks or more recently by free fetal DNA testing. Chorion villus sampling (CVS) can be done at 11–14 weeks, and has a 1% risk of miscarriage. Amniocentesis can be done after 15 weeks, and has a 0.5% risk of miscarriage. Fetal blood sampling can be done around 18 weeks. Another option in the case of unclear genetic test results is fetal muscle biopsy.
If DNA testing fails to find the mutation, a muscle biopsy test may be performed. A small sample of muscle tissue is extracted using a biopsy needle. The key tests performed on the biopsy sample for DMD are immunocytochemistry and immunoblotting for dystrophin, and should be interpreted by an experienced neuromuscular pathologist. These tests provide information on the presence or absence of the protein. Absence of the protein is a positive test for DMD. Where dystrophin is present, the tests indicate the amount and molecular size of dystrophin, helping to distinguish DMD from milder dystrophinopathy phenotypes. Over the past several years, DNA tests have been developed that detect more of the many mutations that cause the condition, and muscle biopsy is not required as often to confirm the presence of DMD.
In terms of the diagnosis of Becker muscular dystrophy symptom development resembles that of Duchenne muscular dystrophy. A physical exam indicates lack of pectoral and upper arm muscles, especially when the disease is unnoticed through the early teen years. Muscle wasting begins in the legs and pelvis, then progresses to the muscles of the shoulders and neck. Calf muscle enlargement (pseudohypertrophy) is quite obvious. Among the exams/tests performed are:
- Muscle biopsy
- Creatine kinase test
- Electromyography (shows that weakness is caused by destruction of muscle tissue rather than by damage to nerves.)
- Genetic testing
The diagnosis of muscular dystrophy is based on the results of muscle biopsy, increased creatine phosphokinase (CpK3), electromyography, and genetic testing. A physical examination and the patient's medical history will help the doctor determine the type of muscular dystrophy. Specific muscle groups are affected by different types of muscular dystrophy.
Other tests that can be done are chest X-ray, echocardiogram, CT scan, and magnetic resonance image scan, which via a magnetic field can produce images whose detail helps diagnose muscular dystrophy.
The progression of Becker muscular dystrophy is highly variable—much more so than Duchenne muscular dystrophy. There is also a form that may be considered as an intermediate between Duchenne and Becker MD (mild DMD or severe BMD).
Severity of the disease may be indicated by age of patient at the onset of the disease. One study showed that there may be two distinct patterns of progression in Becker muscular dystrophy. Onset at around age 7 to 8 years of age shows more cardiac involvement and trouble climbing stairs by age 20, if onset is around age 12, there is less cardiac involvement.
The quality of life for patients with Becker muscular dystrophy can be impacted by the symptoms of the disorder. But with assistive devices, independence can be maintained. People affected by Becker muscular dystrophy can still maintain active lifestyles.
Prognosis depends on the individual form of MD. In some cases, a person with a muscle disease will get progressively weaker to the extent that it shortens lifespan due to heart and breathing complications. However, some of the muscle diseases do not affect life expectancy at all, and ongoing research is attempting to find cures and treatments to slow muscle weakness.
The mdx mouse is a popular model for studying Duchenne muscular dystrophy (DMD).
The mdx mouse has a point mutation in its DMD gene, changing the amino acid coding for a glutamine to a threonine. This causes the muscle cells to produce a small, nonfunctional dystrophin protein. As a result, the mouse has a mild form of DMD where there is increased muscle damage and weakness.
A contiguous gene syndrome (CGS), also known as a contiguous gene deletion syndrome is a clinical phenotype caused by a chromosomal abnormality, such as a deletion or duplication that removes several genes lying in close proximity to one another on the chromosome. The combined phenotype of the patient is a combination of what is seen when any individual has disease-causing mutations in any of the individual genes involved in the deletion. While it can be caused by deleted material on a chromosome, it is not, strictly speaking, the same entity as a segmental aneuploidy syndrome. A segmental aneuploidy syndrome is a subtype of CGS that regularly recur, usually due to non-allelic homologous recombination between low copy repeats in the region. Most CGS involve the X chromosome and affect male individuals.
One of the earliest and most famous examples of a CGS involves a male patient with Duchenne muscular dystrophy (DMD), chronic granulomatous disease (CGD), retinitis pigmentosa and intellectual disability. When it was discovered that an X chromosome deletion (specifically Xp21) was the underlying cause of all of these features, researchers were able to use this information to clone the genes responsible for DMD and CGD.
One of those more common CGS involves a deletion on the X chromosome (near Xp21) that encompasses "DMD" (causing Duchenne muscular dystrophy), "NROB1" (causing X-linked adrenal hypoplasia congenita) and "GK" (causing glycerol kinase deficiency). These patients will have all the common features of each individual disease, resulting in a very complex phenotype. Deletions near the distal tip of the p arm of the X chromosome are also a frequent cause of CGS. In addition to the previously described CGS that occur on the X chromosome, two other common syndromes are Langer-Giedion syndrome (caused by deletions of "TRPS1" and "EXT1" on 8q24 and WAGR syndrome (caused by deletions on 11q13 encompassing "PAX6" and "WT1".)
The World Anti-Doping Agency (WADA) is the main regulatory organization looking into the issue of the detection of gene doping. Both direct and indirect testing methods are being researched by the organization. Directly detecting the use of gene therapy usually requires the discovery of recombinant proteins or gene insertion vectors, while most indirect methods involve examining the athlete in an attempt to detect bodily changes or structural differences between endogenous and recombinant proteins.
Indirect methods are by nature more subjective, as it becomes very difficult to determine which anomalies are proof of gene doping, and which are simply natural, though unusual, biological properties. For example, Eero Mäntyranta, an Olympic cross country skier, had a mutation which made his body produce abnormally high amounts of red blood cells. It would be very difficult to determine whether or not Mäntyranta's red blood cell levels were due to an innate genetic advantage, or an artificial one.
A wide variety of treatment modalities are currently recommended including Immunosuppressive agents, intravenous immunoglobulins (IVIG), and antiviral agents although the effectiveness of these treatments are not well established and no specific treatment is available.
Coxsackieviruses-induced cardiomyopathy are positive-stranded RNA viruses in picornavirus family and the genus enterovirus, acute enterovirus infections such as Coxsackievirus B3 have been identified as the cause of virally induced acute myocarditis, resulting in dilated cardiomyopathy. Dilated cardiomyopathy in humans can be caused by multiple factors including hereditary defects in the cytoskeletal protein dystrophin in Duchenne muscular dystrophy (DMD) patients). A heart that undergoes dilated cardiomyopathy shows unique enlargement of ventricles, and thinning of the ventricular wall that may lead to heart failure. In addition to the genetic defects in dystrophin or other cytoskeletal proteins, a subset of dilated cardiomyopathy is linked to enteroviral infection in the heart, especially coxsackievirus B. Enterovirus infections are responsible for about 30% of the cases of acquired dilated cardiomyopathy in humans.
Gene doping is the hypothetical non-therapeutic use of gene therapy by athletes in order to improve their performance in those sporting events which prohibit such applications of genetic modification technology, and for reasons other than the treatment of disease. , there is no evidence that gene doping has been used for athletic performance-enhancement in any sporting events. Gene doping would involve the use of gene transfer to increase or decrease gene expression and protein biosynthesis of a specific human protein; this could be done by directly injecting the gene carrier into the person, or by taking cells from the person, transfecting the cells, and administering the cells back to the person.
The historical development of interest in gene doping by athletes and concern about the risks of gene doping and how to detect it moved in parallel with the development of the field of gene therapy, especially with the publication in 1998 of work on a transgenic mouse overexpressing insulin-like growth factor 1 that was much stronger than normal mice, even in old age, preclinical studies published in 2002 of a way to deliver erythropoietin (EPO) via gene therapy, and publication in 2004 of the creation of a "marathon mouse" with much greater endurance than normal mice, created by delivering the gene expressing PPAR gamma to the mice. The scientists generating these publications were all contacted directly by athletes and coaches seeking access to the technology. The public became aware of that activity in 2006 when such efforts were part of the evidence presented in the trial of a German coach.
Scientists themselves, as well as bodies including the World Anti-Doping Agency (WADA), the International Olympic Committee, and the American Association for the Advancement of Science, started discussing the risk of gene doping in 2001, and by 2003 WADA had added gene doping to the list of banned doping practices, and shortly thereafter began funding research on methods to detect gene doping.
Genetic enhancement includes manipulation of genes or gene transfer by healthy athletes for the purpose of physically improving their performance. Genetic enhancement includes gene doping and has potential for abuse among athletes, all while opening the door to political and ethical controversy.