Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Because CAPS is extremely rare and has a broad clinical presentation, it is difficult to diagnose, and a significant delay exists between symptom onset and definitive diagnosis. There are currently no clinical or diagnostic criteria for CAPS based solely on clinical presentation. Instead, diagnosis is made by genetic testing for "NLRP3" mutations. Acute phase reactants and white blood cell count are usually persistently elevated, but this is aspecific for CAPS.
In addition to tests corresponding to the above findings (such as EMG for neuropathy, CT scan, bone marrow biopsy to detect clonal plasma cells, plasma or serum protein electrophoresis to myeloma proteins, other tests can give abnormal results supporting the diagnosis of POEMS syndrome. These included raised blood levels of VEGF, thrombocytes, and/or erythrocyte parameters.
Patients diagnosed as having Castleman disease but also exhibiting many of the symptoms and signs of POEMS syndrome but lacking evidence of a peripheral neuropathy and/or clonal plasma cells should not be diagnosed as having POEMS syndrome. They are better classified as having Castleman disease variant of POEMS syndrome. These patients may exhibit high blood levels of the interleukin-6 cytokine and have an inferior overall survival compared to POEMS syndrome patients. Treatment of patients with this POEMS syndrome variant who have evidence of bone lesions and/or myeloma proteins are the same as those for POEMS syndrome patients. In the absence of these features, treatment with rituximab, a monoclonal antibody preparation directed against B cells bearing the CD20 antigen, or siltuximab, a monoclonal antibody preparation directed against interleukin-6, may be justified.
Criteria for the clinically defined diagnosis of lymphocyte-variant hypereosinophilia have not been strictly set forth. Diagnosis must first rule out other causes of eosinophilia and hypereosinophilia, such as those due to allergies, drug reactions, infestations, and autoimmune diseases as well as those associated with eosinophilic leukemia, clonal eosinophilia, systemic mastocytosis, and other malignancies (see causes of eosinophilia). Criteria for the diagnosis include findings of: a) long term hypereosinophila (i.e. eosinophil blood counts >1,500/microliter) plus physical findings and symptoms associated with the disease; b) bone marrow analysis showing abnormally high levels of eosinophils; c) elevated serum levels of Immunoglobulin E, other immunoglobulins, and CCL17; d) eosinophil infiltrates in afflicted tissues; e) increased numbers of blood and/or bone marrow T cells bearing abnormal immunophenotype cluster of differentiation markers as defined by fluorescence-activated cell sorting (see above section on Pathogenesis); f) abnormal T cell receptor arrangements as defined by polymerase chain reaction methods (see above section on Pathogenesis); and g) evidence of excessive IL-5 secretion by lymphocytes (see above section on Pathogenesis). In many clinical settings, however, studies on the T cell receptor and IL-5 are not available and therefore not routine parts of the diagnostic work-up or criteria for the disease. The finding of T cells bearing abnormal immunophenotype cluster of differentiation markers is critical to making the diagnosis.
Although frequently employed to treat patients experiencing the cytokine storm associated with ARDS, corticosteroids and NSAIDs have been evaluated in clinical trials and have shown no effect on lung mechanics, gas exchange, or beneficial outcome in early established ARDS.
Preliminary data from clinical trials involving patients with sepsis-induced ARDS have shown a reduction in organ damage and a trend toward improvement in survival (survival in ARDS is approximately 60%) after administering or upregulating a variety of free radical scavengers (antioxidants).
Lymphocyte-variant hypereosinophilia usually takes a benign and indolent course. Long term treatment with corticosteroids lowers blood eosinophil levels as well as suppresses and prevents complications of the disease in >80% of cases. However, signs and symptoms of the disease recur in virtually all cases if corticosteroid dosages are tapered in order to reduce the many adverse side effects of corticosteroids. Alternate treatments used to treat corticosteroid resistant disease or for use as corticosteroid-sparing substitutes include interferon-α or its analog, Peginterferon alfa-2a, Mepolizumab (an antibody directed against IL-5), Ciclosporin (an Immunosuppressive drug), imatinib (an inhibitor of tyrosine kinases; numerous tyrosine kinase cell signaling proteins are responsible for the growth and proliferation of eosinophils {see clonal eosinophilia}), methotrexate and Hydroxycarbamide (both are chemotherapy and immunosuppressant drugs), and Alemtuzumab (a antibody that binds to the CD52 antigen on mature lymphocytes thereby marking them for destruction by the body). The few patients who have been treated with these alternate drugs have exhibited good responses in the majority of instances. Reslizumab, a newly developed antibody directed against interleukin 5 that has been successfully used to treat 4 patients with the hypereosinophilic syndrome, may also be of use for lymphocyte-variant eosinophilia. Patients suffering minimal or no disease complications have gone untreated.
In 10% to 25% of patients, mostly 3 to 10 years after initical diagnosis, the indolent course of lymphocyte-variant hypereosinophilia changes. Patients exhibit rapid increases in lymphadenopathy, spleen size, and blood cell numbers, some cells of which take on the appearance of immature and/or malignant cells. Their disease soon thereafter escalates to an angioimmunoblastic T-cell lymphoma, peripheral T cell lymphoma, Anaplastic large-cell lymphoma (which unlike most lymphomas of this type is Anaplastic lymphoma kinase-negative), or Cutaneous T cell lymphoma. The malignantly transformed disease is aggressive and has a poor prognosis. Recommended treatment includes chemotherapy with Fludarabine, Cladribine, or the CHOP combination of drugs followed by bone marrow transplantation.
Since interleukin 1β plays a central role in the pathogenesis of the disease, therapy typically targets this cytokine in the form of monoclonal antibodies (such as canakinumab), binding proteins/traps (such as rilonacept), or interleukin 1 receptor antagonists (such as anakinra). These therapies are generally effective in alleviating symptoms and substantially reducing levels of inflammatory indices. Case reports suggest that thalidomide and the anti-IL-6 receptor antibody tocilizumab may also be effective.
CRS is an adverse effect of some drugs and is a form of systemic inflammatory response syndrome.
The Common Terminology Criteria for Adverse Events classifications for CRS as of version 4.03 issued in 2010 were:
The current (2008) diagnostic criteria for HLH are
1. A molecular diagnosis consistent with HLH. These include the identification of pathologic mutations of PRF1, UNC13D, or STX11.
OR
2. Fulfillment of five out of the eight criteria below:
- Fever (defined as a temperature >100.4 °F, >38 °C)
- Enlargement of the spleen
- Decreased blood cell counts affecting at least two of three lineages in the peripheral blood:
- Haemoglobin <9 g/100 ml (in infants <4 weeks: haemoglobin <10 g/100 ml) (anemia)
- Platelets <100×10/L (thrombocytopenia)
- Neutrophils <1×10/L (neutropenia
- High blood levels of triglycerides (fasting, greater than or equal to 265 mg/100 ml) and/or decreased amounts of fibrinogen in the blood (≤ 150 mg/100 ml)
- Ferritin ≥ 500 ng/ml
- Haemophagocytosis in the bone marrow, spleen or lymph nodes
- Low or absent natural killer cell activity
- Soluble CD25 (soluble IL-2 receptor) >2400 U/ml (or per local reference laboratory)
In addition, in the case of familial HLH, no evidence of malignancy should be apparent.
It should be noted that not all five out of eight criteria are required for diagnosis of HLH in adults, and a high index of suspicion is required for diagnosis as delays results in increased mortality. The diagnostic criteria were developed in pediatric populations and have not been validated for adult HLH patients. Attempts to improve diagnosis of HLH have included use of the HScore, which can be used to estimate an individual's risk of HLH.
Treatments used to combat autoimmune diseases and conditions caused by eosinophils include:
- corticosteroids – promote apoptosis. Numbers of eosinophils in blood are rapidly reduced
- monoclonal antibody therapy – e.g., mepolizumab or reslizumab against IL-5, prevents eosinophilopoiesis
- antagonists of leukotriene synthesis or receptors
- imatinib (STI571) – inhibits PDGF-BB in hypereosinophilic leukemia
Monoclonal antibodies such as dupilumab and lebrikizumab target IL-13 and its receptor, which reduces eosinophilic inflammation in pateints with asthma due to lowering the number of adhesion molecules present for eosinophils to bind to, thereby decreasing inflammation. Mepolizumab and benralizumab are other treatment options that target the alpha subunit of the IL-5 receptor, thereby inhibiting its function and reducing the number of developing eosinophils as well as the number of eosinophils leading to inflammation through antibody-dependent cell-mediated cytotoxicity and eosinophilic apoptosis.
Gleich's syndrome, which may be a form of lymphocyte-variant hypereosinophilia, involves hypereosinophilia, elevated blood levels of IgM antibodies, and clonal expansion of T cells. Similar to lymphocyte=variant hypereosinophilia, the increased levels of blood eosinophils in Gleich's syndrome is thought to be secondary to the secretion of eosinophil-stimulating cytokines by a T cell clone(s).
The blood count typically shows decreased numbers of blood cells—including a decreased amount of circulating red blood cells, white blood cells, and platelets.
The bone marrow may show hemophagocytosis.
The liver function tests are usually elevated. A low level of the protein albumin in the blood is common.
The serum C reactive protein, erythrocyte sedimentation rate, and ferritin level are markedly elevated. In children, a ferritin above 10000 is very sensitive and specific for the diagnosis of HLH, however, the diagnostic utility for ferritin is less for adult HLH patients.
The serum fibrinogen level is usually low and the D-dimer level is elevated.
The sphingomyelinase is elevated.
Bone marrow biopsy shows histiocytosis.
Cytokine release syndrome is an adverse effect of some monoclonal antibody drugs, as well as adoptive T-cell therapies. Severe cases have been called "cytokine storms", a term borrowed from discussions of the pathophysiology of immune disorders and infectious disease.
CRS has been known since the approval of the first monoclonal antibody drug, Muromonab-CD3, which causes CRS, but people working in the field of drug development at biotech and pharmaceutical companies, regulatory agencies, and academia began to more intensely discuss methods to classify it and how to mitigate its risk following the disastrous 2006 Phase I clinical trial of TGN 1412, in which the six subjects experienced severe CRS.
IgG4-related disease or Immunoglobulin G4-related disease is a condition dacryoadenitis, sialadenitis, lymphadentitis, and pancreatitis (i.e. inflammation of the lacrimal glands, salivary glands, lymph nodes, and pancreas, respectively) plus retroperitoneal fibrosis. Less commonly, almost any other organ or tissue except joints and brain may be beleaguered by the inflammatory disorder. About 1/3 of cases exhibit eosinophilia or, rarely, hypereosinophilia. This increase in blood eosinophil count is often associated with abnormal T-lymphocyte clones (e.g increased numbers of CD4 negative, CD7 positive T cells, CD3 negative, CD4 positive T cells, or CD3 positive, CD4 negative, CD8 negative T cells) and is thought to be secondary to these immunological disturbances. The disorder often exhibits are recurrent-relapsing course and is highly responsive to corticosteroids or rituximab as first-line therapy and interferon gamma as second-line therapy.
In eosinophilic myocarditis, echocardiography typically gives non-specific and only occasional findings of endocardium thickening, left ventricular hypertrophy, left ventricle dilation, and involvement of the mitral and/or tricuspid valves. However, in acute necrotizing eosinophilic myocarditis, echocardiography usually gives diagnostically helpful evidence of a non-enlarged heart with a thickened and poorly contracting left ventricle. Gadolinium-based cardiac magnetic resonance imaging is the most useful non-invasive procedure for diagnosing eosinophilic myocarditis. It supports this diagnosis if it shows at least two of the following abnormalities: a) an increased signal in T2-weighted images; b) an increased global myocardial early enhancement ratio between myocardial and skeletal muscle in enhanced T1 images and c) one or more focal enhancements distributed in a non-vascular pattern in late enhanced T1-weighted images. Additionally, and unlike in other forms of myocarditis, eosinophilic myocarditis may also show enhanced gadolinium uptake in the sub-endocardium. However, the only definitive test for eosinophilic myocarditis in cardiac muscle biopsy showing the presence of eosinophilic infiltration. Since the disorder may be patchy, multiple tissue samples taken during the procedure improve the chances of uncovering the pathology but in any case negative results do not exclude the diagnosis.
The International Pediatric Sepsis Consensus has proposed some changes to adapt these criteria to the pediatric population.
In children, the SIRS criteria are modified in the following fashion:
- Heart rate is greater than 2 standard deviations above normal for age in the absence of stimuli such as pain and drug administration, or unexplained persistent elevation for greater than 30 minutes to 4 hours. In infants, also includes heart rate less than 10th percentile for age in the absence of vagal stimuli, beta-blockers, or congenital heart disease or unexplained persistent depression for greater than 30 minutes.
- Body temperature obtained orally, rectally, from Foley catheter probe, or from central venous catheter probe less than 36 °C or greater than 38.5 °C. Temperature must be abnormal to qualify as SIRS in pediatric patients.
- Respiratory rate greater than 2 standard deviations above normal for age or the requirement for mechanical ventilation not related to neuromuscular disease or the administration of anesthesia.
- White blood cell count elevated or depressed for age not related to chemotherapy, or greater than 10% bands plus other immature forms.
In a large number of phase I and phase II studies, autologous and allogeneic CIK cells displayed a high cytotoxic potential against a broad range of varying tumor entities, whereas side effects were only minor. In many cases, CIK cell treatment led to complete remissions of tumor burden, prolonged survival durations and improved quality of life, even in advanced disease stages.
Currently, the utilization of CIK cell treatment is restricted to clinical studies, but this therapeutic approach might also benefit patients as first-line treatment modality in the future.
The international registry on CIK cells (IRCC) was founded in 2011 as an independent organization, dedicated to collect data about clinical trials utilizing CIK cells and subsequent analysis to determine the latest state of clinical CIK cell research. A particular focus is thereby the evaluation of CIK cell efficacy in clinical trials and side effects.
Generally, the treatment for SIRS is directed towards the underlying problem or inciting cause (i.e. adequate fluid replacement for hypovolemia, IVF/NPO for pancreatitis, epinephrine/steroids/diphenhydramine for anaphylaxis).
Selenium, glutamine, and eicosapentaenoic acid have shown effectiveness in improving symptoms in clinical trials. Other antioxidants such as vitamin E may be helpful as well.
Septic treatment protocol and diagnostic tools have been created due to the potentially severe outcome septic shock. For example, the SIRS criteria were created as mentioned above to be extremely sensitive in suggesting which patients may have sepsis. However, these rules lack specificity, i.e. not a true diagnosis of the condition, but rather a suggestion to take necessary precautions. The SIRS criteria are guidelines set in place to ensure septic patients receive care as early as possible.
In cases caused by an implanted mesh, removal (explantation) of the polypropylene surgical mesh implant may be indicated.
An increase in eosinophils, i.e., the presence of more than 500 eosinophils/microlitre of blood is called an eosinophilia, and is typically seen in people with a parasitic infestation of the intestines; autoimmune and collagen vascular disease (such as rheumatoid arthritis) and Systemic lupus erythematosus; malignant diseases such as eosinophilic leukemia, clonal hypereosinophilia, and Hodgkin's disease; lymphocyte-variant hypereosinophilia; extensive skin diseases (such as exfoliative dermatitis); Addison's disease and other causes of low corticosteroid production (corticosteroids suppress blood eosinophil levels); reflux esophagitis (in which eosinophils will be found in the squamous epithelium of the esophagus) and eosinophilic esophagitis; and with the use of certain drugs such as penicillin. But, perhaps the most common cause for eosinophilia is an allergic condition such as asthma. In 1989, contaminated L-tryptophan supplements caused a deadly form of eosinophilia known as eosinophilia-myalgia syndrome, which was reminiscent of the Toxic Oil Syndrome in Spain in 1981.
Eosinophils play an important role in asthma as the number of accumulated eosinophils corresponds to the severity of asthmatic reaction. Eosinophilia in mice models are shown to be associated with high interleukin-5 levels. Furthermore, mucosal bronchial biopsies conducted on patients with diseases such as asthma have been found to have higher levels of interleukin-5 leading to higher levels of eosinophils. The infiltration of eosinophils at these high concentrations causes an inflammatory reaction. This ultimately leads to airway remodelling and difficulty of breathing.
Eosinophils can also cause tissue damage in the lungs of asthmatic patients. High concentrations of eosinophil major basic protein and eosinophil-derived neurotoxin that approach cytotoxic levels are observed at degranulation sites in the lungs as well as in the asthmatic sputum.
Without HSCT the condition is inevitably fatal and even HSCT is no guarantee, with a significant portion of patients dying from the disease progression. Factors indicative of a poor prognosis include: thrombocytopenia, late onset of the disease (age ≥ 8 years) and T cell involvement.
Natural killer T (NKT) cells are a heterogeneous group of T cells that share properties of both T cells and natural killer cells. Many of these cells recognize the non-polymorphic CD1d molecule, an antigen-presenting molecule that binds self and foreign lipids and glycolipids. They constitute only approximately 0.1% of all blood T cells. Natural killer T cells should not be confused with natural killer cells.
A lymphocyte is one of the subtypes of white blood cell in a vertebrate's immune system. Lymphocytes include natural killer cells (Phagocytes) (which function in cell-mediated, cytotoxic innate immunity), T cells (for cell-mediated, cytotoxic adaptive immunity), and B cells (for humoral, antibody-driven adaptive immunity). They are the main type of cell found in lymph, which prompted the name "lymphocyte".
An increase in lymphocyte concentration is usually a sign of a viral infection (in some rare case, leukemias are found through an abnormally raised lymphocyte count in an otherwise normal person). A high lymphocyte count with a low neutrophil count might be caused by lymphoma. Pertussis toxin (PTx) of "Bordetella pertussis", formerly known as lymphocytosis-promoting factor, causes a decrease in the entry of lymphocytes into lymph nodes, which can lead to a condition known as lymphocytosis, with a complete lymphocyte count of over 4000 per μl in adults or over 8000 per μl in children. This is unique in that many bacterial infections illustrate neutrophil-predominance instead.