Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Laboratory tests might include: full blood count, liver enzymes, renal function and erythrocyte sedimentation rate.
If the cause for the high platelet count remains unclear, bone marrow biopsy is often undertaken, to differentiate whether the high platelet count is reactive or essential.
Anti-platelet autoantibodies in a pregnant woman with ITP will attack the patient's own platelets and will also cross the placenta and react against fetal platelets. Therefore, ITP is a significant cause of fetal and neonatal immune thrombocytopenia. Approximately 10% of newborns affected by ITP will have platelet counts <50,000/uL and 1% to 2% will have a risk of intracerebral hemorrhage comparable to infants with neonatal alloimmune thrombocytopenia (NAIT).
No lab test can reliably predict if neonatal thrombocytopenia will occur. The risk of neonatal thrombocytopenia is increased with:
- Mothers with a history of splenectomy for ITP
- Mothers who had a previous infant affected with ITP
- Gestational (maternal) platelet count less than 100,000/uL
It is recommended that pregnant women with thrombocytopenia or a previous diagnosis of ITP should be tested for serum antiplatelet antibodies. A woman with symptomatic thrombocytopenia and an identifiable antiplatelet antibody should be started on therapy for their ITP which may include steroids or IVIG. Fetal blood analysis to determine the platelet count is not generally performed as ITP-induced thrombocytopenia in the fetus is generally less severe than NAIT. Platelet transfusions may be performed in newborns, depending on the degree of thrombocytopenia. It is recommended that neonates be followed with serial platelet counts for the first few days after birth.,
Laboratory tests for thrombocytopenia might include full blood count, liver enzymes, kidney function, vitamin B levels, folic acid levels, erythrocyte sedimentation rate, and peripheral blood smear. If the cause for the low platelet count remains unclear, a bone marrow biopsy is usually recommended to differentiate cases of decreased platelet production from cases of peripheral platelet destruction.
Thrombocytopenia in hospitalized alcoholics may be caused by spleen enlargement, folate deficiency, and, most frequently, the direct toxic effect of alcohol on production, survival time, and function of platelets. Platelet count begins to rise after 2 to 5 days' abstinence from alcohol. The condition is generally benign, and clinically significant hemorrhage is rare.
In severe thrombocytopenia, a bone marrow study can determine the number, size and maturity of the megakaryocytes. This information may identify ineffective platelet production as the cause of thrombocytopenia and rule out a malignant disease process at the same time.
Maternal and paternal platelet antigen phenotyping and screening of the maternal serum for anti-platelet antibodies can be performed.
Additionally, platelet antigen genotyping can be performed on the maternal and paternal blood to determine the exact nature of the incompatibility.
Neonatal platelet counts on laboratory testing are typically under 20,000 μL. Higher counts may suggest a different diagnosis, such as maternal immune thrombocytopenic purpura.
The most rapidly effective treatment in infants with severe hemorrhage and/or severe thrombocytopenia (30,000 μL) an infusion of (1 g/kg/day for two days) in the infant has been shown to rapidly increase platelet count and reduce the risk of related injury.
After a first affected pregnancy, if a mother has plans for a subsequent pregnancy, then the mother and father should be typed for platelet antigens and the mother screened for alloantibodies. Testing is available through reference laboratories (such as ). testing of the father can be used to determine zygosiity of the involved antigen and therefore risk to future pregnancies (if homozygous for the antigen, all subsequent pregnancies will be affected, if heterozygous, there is an approximate 50% risk to each subsequent pregnancy). During subsequent pregnancies, the genotype of the fetus can also be determined using amniotic fluid analysis or maternal blood as early as 18 weeks gestation to definitively determine the risk to the fetus.
Generally accepted reference range for absolute neutrophil count (ANC) in adults is 1500 to 8000 cells per microliter (µl) of blood. Three general guidelines are used to classify the severity of neutropenia based on the ANC (expressed below in cells/µl):
- Mild neutropenia (1000 <= ANC < 1500): minimal risk of infection
- Moderate neutropenia (500 <= ANC < 1000): moderate risk of infection
- Severe neutropenia (ANC < 500): severe risk of infection.
Each of these are either derived from laboratory tests or via the formula below:
ANC = formula_1
Treatment of thrombotic thrombocytopenic purpura (TTP) is a medical emergency, since the associated hemolytic anemia and platelet activation can lead to renal failure and changes in the level of consciousness. Treatment of TTP was revolutionized in the 1980s with the application of plasmapheresis. According to the Furlan-Tsai hypothesis, this treatment works by removing antibodies against the von Willebrand factor-cleaving protease ADAMTS-13. The plasmapheresis procedure also adds active ADAMTS-13 protease proteins to the patient, restoring a normal level of von Willebrand factor multimers. Patients with persistent antibodies against ADAMTS-13 do not always manifest TTP, and these antibodies alone are not sufficient to explain how plasmapheresis treats TTP.
In adults, particularly those living in areas with a high prevalence of "Helicobacter pylori" (which normally inhabits the stomach wall and has been associated with peptic ulcers), identification and treatment of this infection has been shown to improve platelet counts in a third of patients. In a fifth, the platelet count normalized completely; this response rate is similar to that found in treatment with rituximab, which is more expensive and less safe. In children, this approach is not supported by evidence, except in high prevalence areas. Urea breath testing and stool antigen testing perform better than serology-based tests; moreover, serology may be false-positive after treatment with IVIG.
Neutropenia that is developed in response to chemotherapy typically becomes evident in seven to fourteen days after treatment. Conditions that indicate the presence of neutropenic fever are implanted devices; leukemia induction; the compromise of mucosal, mucociliary and cutaneous barriers; a rapid decline in absolute neutrophil count, duration of neutropenia >7–10 days, and other illnesses that exist in the patient.
Signs of infection in patients can be subtle. Fevers are a common and early observation. Sometimes overlooked is the presence of hypothermia, which can be present in sepsis. Physical examination and accessing the history and physical examination is focussed on sites of infection. Indwelling line sites, areas of skin breakdown, sinuses, nasopharynx, bronchi and lungs, alimentary tract, and skin are assessed.
The diagnosis of neutropenia is done via the low neutrophil count detection on a full blood count. Generally, other investigations are required to arrive at the right diagnosis. When the diagnosis is uncertain, or serious causes are suspected, bone marrow biopsy may be necessary. Other investigations commonly performed: serial neutrophil counts for suspected cyclic neutropenia, tests for antineutrophil antibodies, autoantibody screen (and investigations for systemic lupus erythematosus), vitamin B and folate assays. Rectal examinations are usually not performed due to the increased risk of introducing bacteria into the blood stream and the possible development of rectal abscesses. A routine chest X-ray and urinalysis may be can not be relied upon or considered normal due to the absence of neutrophils.
Often, no treatment is required or necessary for reactive thrombocytosis. In cases of reactive thrombocytosis of more than 1,000x10/L, it may be considered to administer daily low dose aspirin (such as 65 mg) to minimize the risk of stroke or thrombosis.
However, in primary thrombocytosis, if platelet counts are over 750,000 or 1,000,000, and especially if there are other risk factors for thrombosis, treatment may be needed. Selective use of aspirin at low doses is thought to be protective. Extremely high platelet counts in primary thrombocytosis can be treated with hydroxyurea (a cytoreducing agent) or anagrelide (Agrylin).
In Jak-2 positive disorders, ruxolitinib (Jakafi) can be effective.
TTP is characterized by thrombotic microangiopathy (TMA), the formation of blood clots in small blood vessels throughout the body, which can lead to microangiopathic hemolytic anemia and thrombocytopenia. This characteristic is shared by two related syndromes, hemolytic-uremic syndrome (HUS) and atypical hemolytic uremic syndrome (aHUS). Consequently, differential diagnosis of these TMA-causing diseases is essential. In addition to TMA, one or more of the following symptoms may be present in each of these diseases: neurological symptoms (e.g. confusion, cerebral convulsions seizures,); kidney impairment (e.g. elevated creatinine, decreased estimated glomerular filtration rate [eGFR], abnormal urinalysis); and gastrointestinal (GI) symptoms (e.g. diarrhea nausea/vomiting, abdominal pain, gastroenteritis. Unlike HUS and aHUS, TTP is known to be caused by an acquired defect in the ADAMTS13 protein, so a lab test showing ≤5% of normal ADAMTS13 levels is indicative of TTP. ADAMTS13 levels above 5%, coupled with a positive test for shiga-toxin/enterohemorrhagic "E. coli" (EHEC), are more likely indicative of HUS, whereas absence of shiga-toxin/EHEC can confirm a diagnosis of aHUS.
People may be diagnosed after prolonged and/or recurring bleeding episodes. Children and adults may also be diagnosed after profuse bleeding after a trauma or tooth extraction. Ultimately, a laboratory diagnosis is usually required. This would utilize platelet aggregation studies and flow cytometry.
The mortality rate is around 95% for untreated cases, but the prognosis is reasonably favorable (80–90% survival) for patients with idiopathic TTP diagnosed and treated early with plasmapheresis.
There has been no general recommendation for treatment of patients with Giant Platelet Disorders, as there are many different specific classifications to further categorize this disorder which each need differing treatments. Platelet transfusion is the main treatment for people presenting with bleeding symptoms. There have been experiments with DDAVP (1-deamino-8-arginine vasopressin) and splenectomy on people with Giant platelet disorders with mixed results, making this type of treatment contentious.
A complete blood count (CBC) can be done to diagnose anemia (normochromic, normocytic), thrombocytopenia, and neutropenia. Abnormal liver function tests are commonly used to help in diagnosis as the spleen and liver are strongly affected by one another.
Aside from observing the symptoms characteristic of X-linked thrombocytopenia in infancy (easy bruising, mild anemia, mucosal bleeding), molecular genetic testing would be done to confirm the diagnosis. Furthermore, flow cytometry or western blotting would be used to test for decreased or absent amounts of WASp. Family history would also assist in diagnosis, with specific attention to maternally related males with "WAS"-related disorders. Because "WAS"-related disorders are phenotypically similar, it is important to confirm the absence of the diagnostic criteria for Wiskoff-Aldrich syndrome at the outset. These diagnostic criteria include eczema, lymphoma, autoimmune disorder, recurrent bacterial or viral infections, family history of maternally related males with a "WAS"-related disorder, and absent or decreased "WASp". X-linked congenital neutropenia can be diagnostically distinguished from XLT with persistent neutropenia, arrested development of the bone marrow, and normal "WASp" expression.
Treatment is directed at the prevention of haemorrhagic shock. Standard dose prednisolone does not increase the platelet count. High-dose methylprednisolone therapy in children with Onyalai has been shown to improve platelet count and reduce the requirement for transfusions. Vincristine sulphate may be of benefit to some patients. Splenectomy is indicated in patients with severe uncontrollable haemorrhage. High-dose intravenous gammaglobulin may help in increasing the platelet count and cessation of haemorrhage.
If rheumatoid arthritis is present and other symptoms occur that are not commonly found within RA itself, such as a palpable spleen, further testing should be done. A palpable spleen is not always a clinical significance, therefore CT scan, MRI, or ultrasound can be administered in order to help diagnose the condition. According to Poulin et al, dimensional guidelines for diagnosing splenomegaly are as follows:
- Moderate if the largest dimension is 11-20 cm
- Severe if the largest dimension is greater than 20 cm
HIT may be suspected if blood tests show a falling platelet count in someone receiving heparin, even if the heparin has already been discontinued. Professional guidelines recommend that people receiving heparin have a complete blood count (which includes a platelet count) on a regular basis while receiving heparin.
However, not all people with a falling platelet count while receiving heparin turn out to have HIT. The timing, severity of the thrombocytopenia, the occurrence of new thrombosis, and the presence of alternative explanations, all determine the likelihood that HIT is present. A commonly used score to predict the likelihood of HIT is the "4 Ts" score introduced in 2003. A score of 0–8 points is generated; if the score is 0-3, HIT is unlikely. A score of 4–5 indicates intermediate probability, while a score of 6–8 makes it highly likely. Those with a high score may need to be treated with an alternative drug while more sensitive and specific tests for HIT are performed, while those with a low score can safely continue receiving heparin as the likelihood that they have HIT is extremely low. In an analysis of the reliability of the 4T score, a low score had a negative predictive value of 0.998, while an intermediate score had a positive predictive value of 0.14 and a high score a positive predictive value of 0.64; intermediate and high scores therefore warrant further investigation.
The first screening test in someone suspected of having HIT is aimed at detecting antibodies against heparin-PF4 complexes. This may be with a laboratory test of the ELISA (enzyme-linked immunosorbent assay) type. The ELISA test, however, detects all circulating antibodies that bind heparin-PF4 complexes, and may also falsely identify antibodies that do not cause HIT. Therefore, those with a positive ELISA are tested further with a functional assay. This test uses platelets and serum from the patient; the platelets are washed and mixed with serum and heparin. The sample is then tested for the release of serotonin, a marker of platelet activation. If this serotonin release assay (SRA) shows high serotonin release, the diagnosis of HIT is confirmed. The SRA test is difficult to perform and is usually only done in regional laboratories.
If someone has been diagnosed with HIT, some recommend routine Doppler sonography of the leg veins to identify deep vein thromboses, as this is very common in HIT.
The diagnostic workup is directed by the presenting signs and symptoms, and can involve:
- blood counts, clotting studies, and other laboratory testing
- imaging tests (ultrasound, CT scan, MRI, sometimes angiography, and rarely nuclear medicine scans)
- biopsy of the tumor.
Patients uniformly show severe thrombocytopenia, low fibrinogen levels, high fibrin degradation products (due to fibrinolysis), and microangiopathic hemolysis.
The similarities between HUS, aHUS, and TTP make differential diagnosis essential. All three of these systemic TMA-causing diseases are characterized by thrombocytopenia and microangiopathic hemolysis, plus one or more of the following: neurological symptoms (e.g., confusion, cerebral convulsions, seizures); renal impairment (e.g., elevated creatinine, decreased estimated glomerular filtration rate [eGFR], abnormal urinalysis); and gastrointestinal (GI) symptoms (e.g., diarrhea, nausea/vomiting, abdominal pain, gastroenteritis).The presence of diarrhea does not exclude aHUS as the cause of TMA, as 28% of patients with aHUS present with diarrhea and/or gastroenteritis. First diagnosis of aHUS is often made in the context of an initial, complement-triggering infection, and Shiga-toxin has also been implicated as a trigger that identifies patients with aHUS. Additionally, in one study, mutations of genes encoding several complement regulatory proteins were detected in 8 of 36 (22%) patients diagnosed with STEC-HUS. However, the absence of an identified complement regulatory gene mutation does not preclude aHUS as the cause of the TMA, as approximately 50% of patients with aHUS lack an identifiable mutation in complement regulatory genes.
Diagnostic work-up supports the differential diagnosis of TMA-causing diseases. A positive Shiga-toxin/EHEC test confirms a cause for STEC-HUS, and severe ADAMTS13 deficiency (i.e., ≤5% of normal ADAMTS13 levels) confirms a diagnosis of TTP.
Onyalai is limited to black populations in central southern Africa. The affected age range is from less than a year to 70 years and seems not to be gender-specific in the same manner as ITP. Cases generally peak between 11 and 20 years old.
Analysis of patient admissions in Namibia between 1981 and 1988 showed an incidence rate of onyalai to be 1.19% with the annual incidence varying between 0.96% and 1.66% of all admissions. The female to male ratio was 3:2. The mean age at presentation was 24.8 years (range 6 months to 80 years) and the mean hospital stay (and duration of clinical bleeding) was 7.68 days (ranging between 1–38 days). The treatment policy of commencing intravenous fluid on admission and a blood transfusion whenever the haemoglobin dropped below 10 g/dl in patients with active bleeding was associated with a mortality rate of 2.78% compared to 9.8% in cases recorded up to 1981.
The primary treatment for CAMT is bone marrow transplantation.
Bone Marrow/Stem Cell Transplant is the only thing that ultimately cures this genetic disease. Frequent platelet transfusions are required to ensure that platelet levels do not fall to dangerous levels, although this is not always the case. It is known for patients to continue to create very small numbers of platelets over time.
Acute renal failure occurs in 55–70% of patients with STEC-HUS, although up to 70–85% recover renal function. Patients with aHUS generally have poor outcomes, with up to 50% progressing to ESRD or irreversible brain damage; as many as 25% die during the acute phase. However, with aggressive treatment, more than 90% of patients survive the acute phase of HUS, and only about 9% may develop ESRD. Roughly one-third of persons with HUS have abnormal kidney function many years later, and a few require long-term dialysis. Another 8% of persons with HUS have other lifelong complications, such as high blood pressure, seizures, blindness, paralysis, and the effects of having part of their colon removed. The overall mortality rate from HUS is 5–15%. Children and the elderly have a worse prognosis.
Diagnosis is done by the help of symptoms and only blood count abnormality is thrombocytopenia.