Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The diagnosis of IP is established by clinical findings and occasionally by corroborative skin biopsy. Molecular genetic testing of the NEMO IKBKG gene (chromosomal locus Xq28) reveals disease-causing mutations in about 80% of probands. Such testing is available clinically.
In addition, females with IP have skewed X-chromosome inactivation; testing for this can be used to support the diagnosis.
Many people in the past were misdiagnosed with a second type of IP, formerly known as IP1. This has now been given its own name - 'Hypomelanosis of Ito' (incontinentia pigmenti achromians). This has a slightly different presentation: swirls or streaks of hypopigmentation and depigmentation. It is "not" inherited and does not involve skin stages 1 or 2. Some 33–50% of patients have multisystem involvement — eye, skeletal, and neurological abnormalities. Its chromosomal locus is at Xp11, rather than Xq28.
There is no diagnosis as yet for Cutis verticis gyrata (CVH), but it can generally be found out by self, when the person is applying oil to the scalp or getting the hair fully shaven. The ripples are present either in identical form, mostly in the posterior direction, sometimes horizontally also, but it looks more like the ripples of the brain.
There is no clinical diagnosis for CVG as these cases are rarely seen and is often comorbid with other conditions.
The diagnosis of AOS is a clinical diagnosis based on the specific features described above. A system of major and minor criteria was proposed.
The combination of two major criteria would be sufficient for the diagnosis of AOS, while a combination of one major and one minor feature would be suggestive of AOS. Genetic testing can be performed to test for the presence of mutation in one of the known genes, but these so far only account for an estimated 50% of patients with AOS. A definitive diagnosis may therefore not be achieved in all cases.
There is no 'cure' for this condition and currently, medical treatment is limited to plastic surgery with excision of the folds by means of scalp reduction/surgical resection. Scalp subcision has also been suggested as a treatment. Additional suggestions also include injections of a dermal filler i.e. Sculptra (poly-L-lactic acid)
Urbach–Wiethe disease is typically diagnosed by its clinical dermatological manifestations, particularly the beaded papules on the eyelids. Doctors can also test the hyaline material with a periodic acid-Schiff (PAS) staining, as the material colors strongly for this stain.
Immunohistochemical skin labeling for antibodies for the ECM1 protein as labeling has been shown to be reduced in the skin of those affected by Urbach–Wiethe disease. Staining with anti-type IV collagen antibodies or anti-type VII collagen antibodies reveals bright, thick bands at the dermoepidermal junction.
Non-contrast CT scans can image calcifications, but this is not typically used as a means of diagnosing the disease. This is partly due to the fact that not all Urbach-Wiethe patients exhibit calcifications, but also because similar lesions can be formed from other diseases such as herpes simplex and encephalitis. The discovery of mutations within the ECM1 gene has allowed the use of genetic testing to confirm initial clinical diagnoses of Urbach–Wiethe disease. It also allows doctors to better distinguish between Urbach–Wiethe disease and other similar diseases not caused by mutations in ECM1.
Some patients have a few or no histopathologic abnormalities. Histological examination of a biopsy may show an increase in the number and size of capillaries and veins (rarely lymphatics), dilated capillaries located in the deeper dermis, and hyperplasia and swollen endothelial cells with occasional dilated veins and venous lakes.
The overall prognosis is excellent in most cases. Most children with Adams–Oliver syndrome can likely expect to have a normal life span. However, individuals with more severe scalp and cranial defects may experience complications such as hemorrhage and meningitis, leading to long-term disability.
Syringomas can often be diagnosed clinically based on presentation, distribution patterns over the body, lack of associated symptoms and family history. A definitive diagnosis requires a skin biopsy to allow the tissue to be examined under a microscope. Histologically, syringomas have a characteristic comma ("tadpole") shaped tail of dilated, cystic eccrine ducts.
The prognosis is favorable in most patients with an isolated cutaneous abnormality. In the majority of cases, both the vivid red marking and the difference in circumference of the extremities regress spontaneously during the first year of life. It is theorized that this may be due to the normal maturation process, with thickening of the epidermis and dermis. Improvements for some patients can continue for up to 10 years, while in other cases, the marbled skin may persist for the patient's lifetime.
One study reported an improvement in lesions in 46% of patients within 3 years. If CMTC persists into adulthood, it can result in complaints due to paresthesia, increased sensitivity to cold and pain, and the formation of ulcers.
Few reports included long-term follow up of CMTC into adolescence and adulthood. While about 50% of patients seem to show definite improvement in the reticular vascular pattern, the exact incidence and cause of persistent cases are unknown.
There does not yet exist a specific treatment for IP. Treatment can only address the individual symptoms.
Urbach–Wiethe disease is typically not a life-threatening condition. The life expectancy of these patients is normal as long as the potential side effects of thickening mucosa, such as respiratory obstruction, are properly addressed. Although this may require a tracheostomy or carbon dioxide laser surgery, such steps can help ensure that individuals with Urbach–Wiethe disease are able to live a full life. Oral dimethyl sulfoxide (DMSO) has been shown to reduce skin lesions, helping to minimize discomfort for these individuals.
There are at least four types of FFDD:
- Type I: autosomal dominant FFDD
- Type II: autosomal recessive FFDD
- Type III: FFDD with other facial features
- Type IV: facial lesions resembling aplasia cutis in a preauricular distribution along the line of fusion of the maxillary and mandibular prominences. Autosomal recessive.
Many features of gerodermia osteodysplastica (GO) and another autosomal recessive form of cutis laxa, wrinkly skin syndrome (WSS, ""), are similar to such an extent that both disorders were believed to be variable phenotypes of a single disorder.
Several delineating factors, however, suggest that gerodermia osteodysplastica and wrinkly skin syndrome are distinct entities, but share the same clinic spectrum.
While the prevailing feature of wrinkly, loose skin is more localized with GO, it is usually systemic, yet eases in severity with age during the course of WSS. Also, as the fontanelles ("soft spots") are usually normal on the heads of infants with GO, they are often enlarged in WSS infants.
While WSS is associated with mutations of genes on chromosomes 2, 5, 7, 11 and 14; GO has been linked to mutations in the protein GORAB. A serum sialotransferrin type 2 pattern, also observed with WSS, is not present in GO patients.
But perhaps the most notable feature, differentiating GO from WSS and similar cutis laxa disorders, is the age-specific metaphyseal peg sometimes found in GO-affected long bone, near the knee. Not appearing until around age 4–5, then disappearing by physeal closure, this oddity of bone is thought to represent a specific genetic marker unique to GO and its effects on bone development.
Beare–Stevenson cutis gyrata syndrome is so rare that a reliable incidence cannot be established as of yet; fewer than 20 patients with the condition have been reported.
Surgical correction is recommended when a constriction ring results in a limb contour deformity, with or without lymphedema.
A diagnosis can be made by an evaluation of medical history and clinical observation. The Beighton criteria are widely used to assess the degree of joint hypermobility. DNA and biochemical studies can help identify affected individuals. Diagnostic tests include collagen gene mutation testing, collagen typing via skin biopsy, echocardiogram, and lysyl hydroxylase or oxidase activity. However, these tests are not able to confirm all cases, especially in instances of an unmapped mutation, so clinical evaluation by a geneticist remains essential. If there are multiple affected individuals in a family, it may be possible to perform prenatal diagnosis using a DNA information technique known as a linkage study. There is poor knowledge about EDS among practitioners.
The original report was of a family in Cardiff, United Kingdom. There are subsequent reports of patients from the USA, France, Australia, UAE, India and from Cuba.
There is no cure for this condition. Treatment is supportive and varies depending on how symptoms present and their severity. Some degree of developmental delay is expected in almost all cases of M-CM, so evaluation for early intervention or special education programs is appropriate. Rare cases have been reported with no discernible delay in academic or school abilities.
Physical therapy and orthopedic bracing can help young children with gross motor development. Occupational therapy or speech therapy may also assist with developmental delays. Attention from an orthopedic surgeon may be required for leg length discrepancy due to hemihyperplasia.
Children with hemihyperplasia are thought to have an elevated risk for certain types of cancers. Recently published management guidelines recommend regular abdominal ultrasounds up to age eight to detect Wilms' tumor. AFP testing to detect liver cancer is not recommended as there have been no reported cases of hepatoblastoma in M-CM patients.
Congenital abnormalities in the brain and progressive brain overgrowth can result in a variety of neurological problems that may require intervention. These include hydrocephalus, cerebellar tonsillar herniation (Chiari I), seizures and syringomyelia. These complications are not usually congenital, they develop over time often presenting complications in late infancy or early childhood, though they can become problems even later. Baseline brain and spinal cord MRI imaging with repeat scans at regular intervals is often prescribed to monitor the changes that result from progressive brain overgrowth.
Assessment of cardiac health with echocardiogram and EKG may be prescribed and arrhythmias or abnormalities may require surgical treatment.
The goal of treatment is to improve the appearance of lesions since they are otherwise not serious and typically do not cause symptoms. Many treatment methods have been attempted however, complete removal is uncommon. No single treatment method has been shown to consistently work. Both medical and surgical treatments have been studied, each with variable success. Common destructive treatment methods include carbon dioxide lasers, dermabrasion, surgical excision, electrocoagulation and chemical peels. Many of these methods are very time consuming and require multiple treatment sessions.Carbon dioxide lasers are the most commonly practiced method; however, can cause thermal damage leading to scarring in the area. Medical therapies include topical atropine, topical retinoids and oral tranilast.
The most common adverse side effects include redness, skin discoloration and pain. Other side effects include blistering and scarring.
A systematic review has not found evidence that creams and oils are useful for preventing or reducing stretch marks in pregnancy. The safety in pregnancy of one ingredient, Centella asiatica, has been questioned. Evidence on treatments for reducing the appearance of the scars after pregnancy is limited.
Cutis laxa (also known as chalazoderma, dermatochalasia, dermatolysis, dermatomegaly, generalized elastolysis, generalized elastorrhexis, or pachydermatocele) is a group of rare connective tissue disorders in which the skin becomes inelastic and hangs loosely in folds.
Focal facial dermal dysplasia (FFDD) is a rare genetically heterogeneous group of disorders that are characterized by congenital bilateral scar like facial lesions, with or without associated facial anomalies. It is characterized by hairless lesions with fingerprint like puckering of the skin, especially at the temples, due to alternating bands of dermal and epidermal atrophy.
This condition is also known as Brauer syndrome (hereditary symmetrical aplastic nevi of temples, bitemporal aplasia cutis congenita, bitemporal aplasia cutis congenita: OMIM ) and Setleis syndrome (facial ectodermal dysplasia: OMIM ).
Treatment for fiddler’s neck is unnecessary if it is painless and shows minimal swelling, particularly since minor cases are taken as a mark of pride. But fiddler’s neck may lead to worse disorders. The primary methods of treatment involve adjustments to playing of the instrument:
- good hygiene for the affected area and for the instrument
- use of a clean cotton cloth that is changed frequently
- use of a shoulder rest to reduce pressure below the jaw
- a suitable chin rest, especially one carved or molded for the individual
- Covering or changing potentially allergenic materials on the instrument.
- shifting the chin rest to the center of the body over the tailpiece
- smoothing coarse surfaces to reduce abrasion
- for males, growing a beard to avoid folliculitis
Surgery is necessary for sialolithiasis, parotid tumors, and cysts. Cervical lymph nodes that are larger than 1 cm must be biopsied. Connective tissue can be removed by excision when a non-inflamed mass is large, and there is generally little recurrence. Infections should be treated conservatively, and causative species should be identified through smear and culture for appropriate antibiotic selection. Reduction of playing time may be helpful for cases without inflammation, but in 30% of cases this did not improve the symptoms.
Differential diagnosis of this condition includes the Birt-Hogg-Dubé syndrome and tuberous sclerosis. As the skin lesions are typically painful, it is also often necessary to exclude other painful tumors of the skin (including blue rubber bleb nevus, leiomyoma, eccrine spiradenoma, neuroma, dermatofibroma, angiolipoma, neurilemmoma, endometrioma, glomus tumor and granular cell tumor; the mnemonic "BLEND-AN-EGG" may be helpful). Other skin lesions that may need to be considered include cylindroma, lipoma, poroma and trichoepithelioma; these tend to be painless and have other useful distinguishing features.
Aplasia cutis congenita (ACC) is a rare disorder characterized by congenital absence of skin. Frieden classified ACC in 1986 into 9 groups on the basis of location of the lesions and associated congenital anomalies. The scalp is the most commonly involved area with lesser involvement of trunk and extremities. Frieden classified ACC with fetus papyraceus as type 5. This type presents as truncal ACC with symmetrical absence of skin in stellate or butterfly pattern with or without involvement of proximal limbs.]It is the most common congenital cicatricial alopecia, and is a congenital focal absence of epidermis with or without evidence of other layers of the skin.
The exact etiology of ACC is still unclear but intrauterine infection by varicella or herpes virus, drugs such as methimazole, misoprostol, valproate, cocaine, marijuana etc., fetus papyraceus, feto-fetal transfusion, vascular coagulation defects, amniotic membrane adherence, abnormal elastic fiber biomechanical forces and trauma are implicated. It can be associated with Johanson-Blizzard syndrome, Adams-Oliver syndrome, trisomy 13, and Wolf-Hirschhorn syndrome.
It can also seen with exposure to methimazole and carbimazole in utero. This dermatological manifestation has been linked to Peptidase D haploinsufficiency and a deletion in Chromosome 19.