Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In order to treat acute limb ischaemia there are a series of things that can be done to determine where the occlusion is located, the severity, and what the cause was. To find out where the occlusion is located one of the things that can be done is simply a pulse examination to see where the heart rate can be detected and where it stops being sensed. Also there is a lower body temperature below the occlusion as well as paleness. A Doppler evaluation is used to show the extent and severity of the ischaemia by showing flow in smaller arteries. Other diagnostical tools are duplex ultrasonography, computed tomography angiography (CTA), and magnetic resonance angiography (MRA). The CTA and MRA are used most often because the duplex ultrasonography although non-invasive is not precise in planning revascularization. CTA uses radiation and may not pick up on vessels for revascularization that are distal to the occlusion, but it is much quicker than MRA. In treating acute limb ischaemia time is everything.
In the worst cases acute limb ischaemia progresses to critical limb ischaemia, and results in death or limb loss. Early detection and steps towards fixing the problem with limb-sparing techniques can salvage the limb. Compartment syndrome can occur because of acute limb ischaemia because of the biotoxins that accumulate distal to the occlusion resulting in edema.
In addition to evaluating the symptoms described above, angiography can distinguish between cases caused by arteriosclerosis obliterans (displaying abnormalities in other vessels and collateral circulations) from those caused by emboli.
Magnetic resonance imaging (MRI) is the preferred test for diagnosing "skeletal muscle infarction".
Another type of thrombolysis disrupts the clot mechanically using either saline jets or, more recently, ultrasound waves. Saline jets dislodge the clot using the Bernoulli effect. Ultrasound waves, emitted at low frequency, create a physical fragmentation of the thrombus.
Early treatment is essential to keep the affected limb viable. The treatment options include injection of an anticoagulant, thrombolysis, embolectomy, surgical revascularisation, or amputation. Anticoagulant therapy is initiated to prevent further enlargement of the thrombus. Continuous IV unfractionated heparin has been the traditional agent of choice.
If the condition of the ischemic limb is stabilized with anticoagulation, recently formed emboli may be treated with catheter-directed thrombolysis using intraarterial infusion of a thrombolytic agent (e.g., recombinant tissue plasminogen activator (tPA), streptokinase, or urokinase). A percutaneous catheter inserted into the femoral artery and threaded to the site of the clot is used to infuse the drug. Unlike anticoagulants, thrombolytic agents work directly to resolve the clot over a period of 24 to 48 hours.
Direct arteriotomy may be necessary to remove the clot. Surgical revascularization may be used in the setting of trauma (e.g., laceration of the artery). Amputation is reserved for cases where limb salvage is not possible. If the patient continues to have a risk of further embolization from some persistent source, such as chronic atrial fibrillation, treatment includes long-term oral anticoagulation to prevent further acute arterial ischemic episodes.
Decrease in body temperature reduces the aerobic metabolic rate of the affected cells, reducing the immediate effects of hypoxia. Reduction of body temperature also reduces the inflammation response and reperfusion injury. For frostbite injuries, limiting thawing and warming of tissues until warmer temperatures can be sustained may reduce reperfusion injury.
With treatment, approximately 80% of patients are alive (approx. 95% after surgery) and approximately 70% of infarcted limbs remain vital after 6 months.
Intermittent claudication is a symptom and is by definition diagnosed by a patient reporting a history of leg pain with walking relieved by rest. However, as other conditions such as sciatica can mimic intermittent claudication, testing is often performed to confirm the diagnosis of peripheral artery disease.
Magnetic resonance angiography and duplex ultrasonography appear to be slightly more cost-effective in diagnosing peripheral artery disease among people with intermittent claudication than projectional angiography.
Upon suspicion of PAD, the first-line study is the ankle–brachial index (ABI). When the blood pressure readings in the ankles is lower than that in the arms, blockages in the arteries which provide blood from the heart to the ankle are suspected. Normal ABI range of 1.00 to 1.40.The patient is diagnosed with PAD when the ABI is ≤ 0.90 . ABI values of 0.91 to 0.99 are considered "borderline" and values >1.40 indicate noncompressible arteries. PAD is graded as mild to moderate if the ABI is between 0.41 and 0.90, and an ABI less than 0.40 is suggestive of severe PAD. These relative categories have prognostic value.
In people with suspected PAD but normal resting ABIs, exercise testing of ABI can be done. A base line ABI is obtained prior to exercise. The patient is then asked to exercise (usually patients are made to walk on a treadmill at a constant speed) until claudication pain occurs (or a maximum of 5 minutes), following which the ankle pressure is again measured. A decrease in ABI of 15%-20% would be diagnostic of PAD.
It is possible for conditions which stiffen the vessel walls (such as calcifications that occur in the setting of long term diabetes) to produce false negatives usually, but not always, indicated by abnormally high ABIs (> 1.40). Such results and suspicions merit further investigation and higher level studies.
If ABIs are abnormal the next step is generally a lower limb doppler ultrasound examination to look at site and extent of atherosclerosis. Other imaging can be performed by angiography, where a catheter is inserted into the common femoral artery and selectively guided to the artery in question. While injecting a radiodense contrast agent an X-ray is taken. Any flow limiting stenoses found in the x-ray can be identified and treated by atherectomy, angioplasty or stenting. Contrast angiography is the most readily available and widely used imaging technique.
Modern multislice computerized tomography (CT) scanners provide direct imaging of the arterial system as an alternative to angiography.
Magnetic resonance angiography (MRA) is a noninvasive diagnostic procedure that uses a combination of a large magnet, radio frequencies, and a computer to produce detailed images to provide pictures of blood vessels inside the body. The advantages of MRA include its safety and ability to provide high-resolution three-dimensional (3D) imaging of the entire abdomen, pelvis and lower extremities in one sitting.
70% of patients with carotid arterial dissection are between the ages of 35 and 50, with a mean age of 47 years.
It is not clear if screening for disease is useful as it has not been properly studied.
Computed tomography (CT) and MRI scanning will show damaged area in the brain, showing that the symptoms were not caused by a tumor, subdural hematoma or other brain disorder. The blockage will also appear on the angiogram.
An inadequate flow of blood to a part of the body may be caused by any of the following:
- Thoracic outlet syndrome (compression of the brachial plexus)
- Atherosclerosis (lipid-laden plaques obstructing the lumen of arteries)
- Hypoglycemia (lower than normal level of glucose)
- Tachycardia (abnormally rapid beating of the heart)
- Radiotherapy
- Hypotension (low blood pressure, e.g. in septic shock, heart failure)
- Outside compression of a blood vessel, e.g. by a tumor or in the case of superior mesenteric artery syndrome
- Sickle cell disease (abnormally shaped red blood cells)
- Induced g-forces which restrict the blood flow and force the blood to the extremities of the body, as in acrobatics and military flying
- Localized extreme cold, such as by frostbite or improper cold compression therapy
- Tourniquet application
- An increased level of glutamate receptor stimulation
- Arteriovenous malformations, and peripheral artery occlusive disease
- rupture of significant blood vessels supplying a tissue or organ.
- Anemia vasoconstricts the periphery so that red blood cells can work internally on vital organs such as the heart, brain, etc., thus causing lack of oxygen to the periphery.
- Premature discontinuation of any oral anticoagulant.
- Unconsciousness, such as due to the ingestion of excessive doses of central depressants like alcohol or opioids, can result in ischemia of the extremities due to unusual body positions that prevent normal circulation
CT angiography would be helpful in differentiating occlusive from non-occlusive causes of mesenteric ischaemia.
Non-occlusive disease has a poor prognosis with survival rate between 40-50%.
The goal of treatment is to prevent the development or continuation of neurologic deficits. Treatments include observation, anticoagulation, stent implantation and carotid artery ligation.
In last decade, similar to myocardial infarction treatment, thrombolytic drugs were introduced in the therapy of cerebral infarction. The use of intravenous rtPA therapy can be advocated in patients who arrive to stroke unit and can be fully evaluated within 3 h of the onset.
If cerebral infarction is caused by a thrombus occluding blood flow to an artery supplying the brain, definitive therapy is aimed at removing the blockage by breaking the clot down (thrombolysis), or by removing it mechanically (thrombectomy). The more rapidly blood flow is restored to the brain, the fewer brain cells die. In increasing numbers of primary stroke centers, pharmacologic thrombolysis with the drug tissue plasminogen activator (tPA), is used to dissolve the clot and unblock the artery.
Another intervention for acute cerebral ischaemia is removal of the offending thrombus directly. This is accomplished by inserting a catheter into the femoral artery, directing it into the cerebral circulation, and deploying a corkscrew-like device to ensnare the clot, which is then withdrawn from the body. Mechanical embolectomy devices have been demonstrated effective at restoring blood flow in patients who were unable to receive thrombolytic drugs or for whom the drugs were ineffective, though no differences have been found between newer and older versions of the devices. The devices have only been tested on patients treated with mechanical clot embolectomy within eight hours of the onset of symptoms.
Angioplasty and stenting have begun to be looked at as possible viable options in treatment of acute cerebral ischaemia. In a systematic review of six uncontrolled, single-center trials, involving a total of 300 patients, of intra-cranial stenting in symptomatic intracranial arterial stenosis, the rate of technical success (reduction to stenosis of <50%) ranged from 90-98%, and the rate of major peri-procedural complications ranged from 4-10%. The rates of restenosis and/or stroke following the treatment were also favorable. This data suggests that a large, randomized controlled trial is needed to more completely evaluate the possible therapeutic advantage of this treatment.
If studies show carotid stenosis, and the patient has residual function in the affected side, carotid endarterectomy (surgical removal of the stenosis) may decrease the risk of recurrence if performed rapidly after cerebral infarction. Carotid endarterectomy is also indicated to decrease the risk of cerebral infarction for symptomatic carotid stenosis (>70 to 80% reduction in diameter).
In tissue losses that are not immediately fatal, the best course of action is to make every effort to restore impairments through physical therapy, cognitive therapy, occupational therapy, speech therapy and exercise.
Exercise can improve symptoms, as can revascularization. Both together may be better than one intervention of its own.
Pharmacological options exist, as well. Medicines that control lipid profile, diabetes, and hypertension may increase blood flow to the affected muscles and allow for increased activity levels. Angiotensin converting enzyme inhibitors, beta-blockers, antiplatelet agents (aspirin and clopidogrel), naftidrofuryl, pentoxifylline, and cilostazol (selective PDE3 inhibitor) are used for the treatment of intermittent claudication. However, medications will not remove the blockages from the body. Instead, they simply improve blood flow to the affected area.
Catheter-based intervention is also an option. Atherectomy, stenting, and angioplasty to remove or push aside the arterial blockages are the most common procedures for catheter-based intervention. These procedures can be performed by interventional radiologists, interventional cardiologists, vascular surgeons, and thoracic surgeons, among others.
Surgery is the last resort; vascular surgeons can perform either endarterectomies on arterial blockages or perform an arterial bypass. However, open surgery poses a host of risks not present with catheter-based interventions.
Pneumatic, surgical tourniquets are frequently applied in the controlled environment of the operating room in order to control blood loss during an upper or lower extremity operative case. Aside from lower blood loss in itself, this improves visualization and surgical efficiency. Modern examples are found in many different sizes to accommodate different patients and sites of applications, with adult cuffs approximately 4" wide. This distributes the pressure over, generally, a broader area than field (emergency, combat) tourniquets. The cuff is typically attached to an adjustable pneumatic pump with a built-in timer. Surgical tourniquet times in excess of 2 hours have been associated with an increased risk of nerve damage (e.g., neuropraxia), likely related to both direct nerve compression as well as decreased arterial inflow and oxygenation. The ischemia-reperfusion injury associated with surgical tourniquets is typically not clinically apparent when used for less than 2 hours.
Emergency field tourniquets have been used for many centuries, and have seen a resurgence in the recent combat operations in Afghanistan and Iraq, as well as expanded use in civilian trauma and mass casualty settings. Expedient and widespread tourniquet use in the modern combat setting is frequently cited as a primary driver for increased survival following major battlefield trauma. These tourniquets are often 1-2" in width, which concentrates the pressure to a narrow band of tissue. They can result in tissue necrosis if kept in place for long periods, and should only be applied after other methods to control bleeding (e.g., elevation or direct pressure to the wound) have failed, except in settings where time does not allow waiting. Generally, tissue distal to a field tourniquet that has been in place for greater than 6 hours is considered likely to be non-viable.
In the same way that external compression tourniquets reduce or eliminate arterial blood flow, aortic cross clamping has the same effect. The Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA) device achieves this as well. By design, these devices induce ischemia to the lower extremities (as a secondary effect, or less commonly as their primary use). Releasing the cross clamp or removing the REBOA initiates reperfusion, and IR injury to the lower extremities may follow.
Reactive hyperaemia or venous hyperemia is the transient increase in organ blood flow that occurs following a brief period of ischaemia. Following ischaemia there will be a shortage of oxygen and a build-up of metabolic waste.
This is commonly tested in the legs using Buerger's test.
Reactive hyperaemia often occurs as a consequence of Raynaud's phenomenon, where the vasospasm in the vasculature leads to ischaemia and necrosis of tissue and thus a subsequent increase in blood flow to remove the waste products and clear up cell debris.
Ischemia-reperfusion (IR) tissue injury is the resultant pathology from a combination of factors, including tissue hypoxia, followed by tissue damage associated with re-oxygenation. IR injury contributes to disease and mortality in a variety of pathologies, including myocardial infarction, ischemic stroke, acute kidney injury, trauma, circulatory arrest, sickle cell disease and sleep apnea. Whether resulting from traumatic vessel disruption, tourniquet application, or shock, the extremity is exposed to an enormous flux in vascular perfusion during a critical period of tissue repair and regeneration. The contribution of this ischemia and subsequent reperfusion on post-traumatic musculoskeletal tissues is unknown; however, it is likely that similar to cardiac and kidney tissue, IR significantly contributes to tissue fibrosis.
Initial screening for CIP/CIM may be performed using an objective scoring system for muscle strength. The Medical Research Council (MRC) score is one such tool, and sometimes used to help identify CIP/CIM patients in research studies. The MRC score involves assessing strength in 3 muscle groups in the right and left sides of both the upper and lower extremities. Each muscle tested is given a score of 0-5, giving a total possible score of 60. An MRC score less than 48 is suggestive of CIP/CIM. However, the tool requires that patients be awake and cooperative, which is often not the case. Also, the screening tool is non-specific, because it does not identify the cause a person's muscle weakness.
Once weakness is detected, the evaluation of muscle strength should be repeated several times. If the weakness persists, then a muscle biopsy, a nerve conduction study (electrophysiological studies), or both should be performed.
The use of heparin following surgery is common if there are no issues with bleeding. Generally, a risk-benefit analysis is required, as all anticoagulants lead to an increased risk of bleeding. In people admitted to hospital, thrombosis is a major cause for complications and occasionally death. In the UK, for instance, the Parliamentary Health Select Committee heard in 2005 that the annual rate of death due to thrombosis was 25,000, with at least 50% of these being hospital-acquired. Hence "thromboprophylaxis" (prevention of thrombosis) is increasingly emphasized. In patients admitted for surgery, graded compression stockings are widely used, and in severe illness, prolonged immobility and in all orthopedic surgery, professional guidelines recommend low molecular weight heparin (LMWH) administration, mechanical calf compression or (if all else is contraindicated and the patient has recently suffered deep vein thrombosis) the insertion of a vena cava filter. In patients with medical rather than surgical illness, LMWH too is known to prevent thrombosis, and in the United Kingdom the Chief Medical Officer has issued guidance to the effect that preventative measures should be used in medical patients, in anticipation of formal guidelines.
CBC, ESR, blood cultures, and sinus cultures help establish and identify an infectious primary source. Lumbar puncture is necessary to rule out meningitis.
Sinus films are helpful in the diagnosis of sphenoid sinusitis. Opacification, sclerosis, and air-fluid levels are typical findings. Contrast-enhanced CT scan may reveal underlying sinusitis, thickening of the superior ophthalmic vein, and irregular filling defects within the cavernous sinus; however, findings may be normal early in the disease course.
A MRI using flow parameters and an MR venogram are more sensitive than a CT scan, and are the imaging studies of choice to diagnose cavernous sinus thrombosis. Findings may include deformity of the internal carotid artery within the cavernous sinus, and an obvious signal hyperintensity within thrombosed vascular sinuses on all pulse sequences.
Cerebral angiography can be performed, but it is invasive and not very sensitive. Orbital venography is difficult to perform, but it is excellent in diagnosing occlusion of the cavernous sinus.
The serum creatine phosphokinase (CPK) can be mildly elevated. While the CPK is often a good marker for damage to muscle tissue, it is not a helpful marker in CIP/CIM, because CIP/CIM is a gradual process and does not usually involve significant muscle cell death (necrosis). Also, even if necrosis is present, it may be brief and is therefore easily missed. If a lumbar puncture (spinal tap) is performed, the protein level in the cerebral spinal fluid would be normal.
Although strains are not restricted to athletes and can happen while doing everyday tasks, however, people who play sports are more at risk for developing a strain. It should also be noted that it is common for an injury to develop when there is a sudden increase in duration, intensity, or frequency of an activity.