Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Hypermagnesemia is diagnosed by measuring the concentration of magnesium in the blood. Concentrations of magnesium greater than 1.1 mmol/L are considered diagnostic.
An alkaline phosphatase isoenzyme test can be done to check for elevated ALP levels. Tissues that contain high levels of ALP include the liver, bile ducts, and bones. Normal levels of ALP range from (44 to 147) U/L (units per liter) and significantly elevated levels may be an indication of conditions such as various types of cancer, bone disease such as Paget disease, liver disease such as hepatitis, blood disorders, or other conditions.
Elevated alkaline phosphatase is most commonly caused by liver disease or bone disorders. Testing for ALP primarily consists of obtaining a blood sample from a patient along with several other tests for the disorder in question that may be associated with the increase in ALP in the blood serum. It is possible to distinguish between the different forms (isoenzymes) of ALP produced by different types of tissues in the body, in order to pinpoint what's causing the increase of ALP, in order to treat the patient for either liver disease or bone disorder. A more rapid way for testing ALP concentration is by using "p"-nitrophenyl phosphate as substrate. The required volume of serum is 5 mm. for each testing. The sample is first incubated for 30 min. at 38 °C, in a buffered solution in the presence of "p"-nitrophenyl phosphate. By the action of ALP, phosphate groups are removed from the substrate and "para"- nitrophenol is liberated giving off a yellow color in solution which can be measured spectrophotometrically.
Normally, children and adolescents have higher Alkaline Phosphatase levels than adults due to an increase in bone growth. ALP is especially high during a period of growth spurt which occurs are different ages in boys and girls.
Various investigations aid the diagnosis.
- ACTH (cosyntropin) stimulation test
- Cortisol level (to assess the level of glucocorticoids)
- Fasting blood sugar
- Serum potassium (to assess the level of mineralocorticoids)
- Serum sodium
Preventing recurrence of hyperkalemia typically involves reduction of dietary potassium, removal of an offending medication, and/or the addition of a diuretic (such as furosemide or hydrochlorothiazide). Sodium polystyrene sulfonate and sorbitol (combined as Kayexalate) are occasionally used on an ongoing basis to maintain lower serum levels of potassium though the safety of long-term use of sodium polystyrene sulfonate for this purpose is not well understood.
High dietary sources include vegetables such as avocados, tomatoes and potatoes, fruits such as bananas, oranges and nuts.
No treatment is generally required, as bone demineralisation and kidney stones are relatively uncommon in the condition.
Adrenal crisis is triggered by physiological stress (such as trauma). Activities that have an elevated risk of trauma are best avoided. Treatment must be given within two hours of trauma and consequently it is advisable to carry injectable hydrocortisone in remote areas.
Prevention of hypermagnesemia usually is possible. In mild cases, withdrawing magnesium supplementation is often sufficient. In more severe cases the following treatments are used:
- Intravenous calcium gluconate, because the actions of magnesium in neuromuscular and cardiac function are antagonized by calcium.
Definitive treatment of hypermagnesemia requires increasing renal magnesium excretion through:
- Intravenous diuretics, in the presence of normal kidney function
- Dialysis, when kidney function is impaired and the patient is symptomatic from hypermagnesemia
Diagnosis is based on clinical and laboratory findings of low serum osmolality and low serum sodium.
Urinalysis reveals a highly concentrated urine with a high fractional excretion of sodium (high sodium urine content compared to the serum sodium).
A suspected diagnosis is based on a serum sodium under 138. A confirmed diagnosis has seven elements: 1) a decreased effective serum osmolality - <275 mOsm/kg of water; 2) urinary sodium concentration high - over 40 mEq/L with adequate dietary salt intake; 3) no recent diuretic usage; 4) no signs of ECF volume depletion or excess; 5) no signs of decreased arterial blood volume - cirrhosis, nehprosis, or congestive heart failure; 6) normal adrenal and thyroid function; and 7) no evidence of hyperglycemia (diabetes mellitus), hypertriglyceridemia, or hyperproteinia (myeloma).
There are nine supplemental features: 1) a low BUN; 2) a low uric acid; 3) a normal creatinine; 4) failure to correct hyponatremia with IV normal saline; 5) successful correction of hyponatremia with fluid restriction; 6) a fractional sodium excretion >1%; 7) a fractional urea excretion >55%; 8) an abnormal water load test; and 9) an elevated plasma AVP.
As most cases of FHH are asymptomatic and benign, the diagnosis of FHH is less likely to be made.
Typically, diagnosis is made in the pursuit of uncovering the etiology of hypercalcemia.
Calcium levels are often in the high normal range or slightly elevated.
Commonly, the parathyroid hormone level is checked and may be slightly elevated or also on the high normal end.
Normally, high calcium should cause low PTH and so this level of PTH is inappropriately high due to the decreased sensitivity of the parathyroid to calcium.
This may be mistaken for primary hyperparathyroidism.
However, evaluation of urine calcium level will reveal a low level of urine calcium.
This too is inappropriate as high serum calcium should result in high urine calcium.
If urine calcium is not checked, this may lead to parathyroidectomy for presumed primary hyperparathyroidism.
Additionally as the name implies, there may be a family history of benign hypercalcemia.
Ultimately, diagnosis of familial hypocalciuric hypercalcemia is made — as the name implies — by the combination of low urine calcium and high serum calcium.
Normal serum potassium levels are generally considered to be between 3.5 and 5.3 mmol/L. Levels above 5.5 mmol/L generally indicate hyperkalemia, and those below 3.5 mmol/L indicate hypokalemia.
Hypophosphatemia is diagnosed by measuring the concentration of phosphate in the blood. Concentrations of phosphate less than 0.81 mmol/L (2.5 mg/dL) are considered diagnostic of hypophosphatemia, though additional tests may be needed to identify the underlying cause of the disorder.
Biochemical studies reveal hypophosphatemia (low blood phosphate), elevated alkaline phosphatase and low serum 1, 25 dihydroxyvitamin D levels. Routine laboratory tests do not include serum phosphate levels and this can result in considerable delay in diagnosis. Even when low phosphate is measured, its significance is often overlooked. The next most appropriate test is measurement of urine phosphate levels. If there is inappropriately high urine phosphate (phosphaturia) in the setting of low serum phosphate (hypophosphatemia), there should be a high suspicion for tumor-induced osteomalacia. FGF23 (see below) can be measured to confirm the diagnosis but this test is not widely available.
Once hypophosphatemia and phosphaturia have been identified, a search for the causative tumor should begin. These are small and difficult to define. Gallium-68 DOTA-Octreotate (DOTA-TATE) positron emission tomography (PET) scanning is the best way to locate these tumors. If this scan is not available, other options include Indium-111 Octreotide (Octreoscan) SPECT/CT, whole body CT or MRI imaging.
Antidiuretic hormone (ADH) is released from the posterior pituitary for a number of physiologic reasons. The majority of people with hyponatremia, other than those with excessive water intake (polydipsia) or renal salt wasting, will have elevated ADH as the cause of their hyponatremia. However, not every person with hyponatremia and elevated ADH has SIADH. One approach to a diagnosis is to divide ADH release into appropriate (not SIADH) or inappropriate (SIADH).
Appropriate ADH release can be a result of hypovolemia, a so-called osmotic trigger of ADH release. This may be true hypovolemia, as a result of dehydration with fluid losses replaced by free water. It can also be perceived hypovolemia, as in the conditions of congestive heart failure (CHF) and cirrhosis in which the kidneys perceive a lack of intravascular volume. The hyponatremia caused by appropriate ADH release (from the kidneys' perspective) in both CHF and cirrhosis have been shown to be an independent poor prognostic indicator of mortality.
Appropriate ADH release can also be a result of non-osmotic triggers. Symptoms such as nausea/vomiting and pain are significant causes of ADH release. The combination of osmotic and non-osmotic triggers of ADH release can adequately explain the hyponatremia in the majority of people who are hospitalized with acute illness and are found to have mild to moderate hyponatremia. SIADH is less common than appropriate release of ADH. While it should be considered in a differential, other causes should be considered as well.
Cerebral salt wasting syndrome (CSWS) also presents with hyponatremia, there are signs of dehydration for which reason the management is diametrically opposed to SIADH. Importantly CSWS can be associated with subarachnoid hemorrhage (SAH) which may require fluid supplementation rather than restriction to prevent brain damage.
Most cases of hyponatremia in children are caused by appropriate secretion of antidiuretic hormone rather than SIADH or another cause.
Serum chemistries are identical in tumor-induced osteomalacia, X-linked hypophosphatemic rickets (XHR) and autosomal dominant hypophosphatemic rickets (ADHR). A negative family history can be useful in distinguishing tumor induced osteomalacia from XHR and ADHR. If necessary, genetic testing for PHEX (phosphate regulating gene with homologies to endopepetidase on the X-chromosome) can be used to conclusively diagnose XHR and testing for the FGF-23 gene will identify patients with ADHR.
The history, physical exam, and laboratory testing are required to determine the underlying cause of hyponatremia. A blood test demonstrating a serum sodium less than 135 mmol/L is diagnostic for hyponatremia. The history and physical exam are necessary to help determine if the patient is hypovolemic, euvolemic, or hypervolemic, which has important implications in determining the underlying cause. An assessment is also made to determine if the patient is experiencing symptoms from their hyponatremia. These include assessments of alertness, concentration, and orientation.
Standard intravenous preparations of potassium phosphate are available and are routinely used in malnourished patients and alcoholics. Oral supplementation is also useful where no intravenous treatment are available. Historically one of the first demonstrations of this was in concentration camp victims who died soon after being re-fed: it was observed that those given milk (high in phosphate) had a higher survival rate than those who did not get milk.
Monitoring parameters during correction with IV phosphate
- Phosphorus levels should be monitored after 2 to 4 hours after each dose, also monitor serum potassium, calcium and magnesium. Cardiac monitoring is also advised.
The following are the most common treatments of elevated alkaline phosphatase.
- Treatment of the underlying condition
- Once doctors identifies the cause of elevated ALP and diagnose a treatment, the levels of alkaline phosphatase fluctuates back to normal
- Removal of medication - that is associated with increased levels of alkaline phosphatase
- Birth control pills
- Anti-inflammatory medication
- Narcotic medication
- Hormonal drug
- Steroid
- Antidepressant
- Dietary changes
- Include foods rich in vitamin D
- Lifestyle change
- Healthy diet in association with physical exercise
- Exposure to sunlight which increases the production of vitamin D
False hyponatremia, also known as spurious, pseudo, hypertonic, or artifactual hyponatremia is when the lab tests read low sodium levels but there is no hypotonicity. In hypertonic hyponatremia, resorption of water by molecules such as glucose (hyperglycemia or diabetes) or mannitol (hypertonic infusion) occurs. In isotonic hyponatremia a measurement error due to high blood triglyceride level (most common) or paraproteinemia occurs. It occurs when using techniques that measure the amount of sodium in a specified volume of serum/plasma, or that dilute the sample before analysis.
Evaluation of a child with persistent high blood pressure usually involves analysis of blood electrolytes and an aldosterone level, as well as other tests. In Liddle's disease, the serum sodium is typically elevated, the serum potassium is reduced, and the serum bicarbonate is elevated. These findings are also found in hyperaldosteronism, another rare cause of hypertension in children. Primary hyperaldosteronism (also known as Conn's syndrome), is due to an aldosterone-secreting adrenal tumor (adenoma) or adrenal hyperplasia. Aldosterone levels are high in hyperaldosteronism, whereas they are low to normal in Liddle syndrome.
A genetic study of the ENaC sequences can be requested to detect mutations (deletions, insertions, missense mutations) and get a diagnosis.
Elevated levels of serum cholestanol are diagnostic of CTX. Alternatively analysis of 27-hydroxycholesterol and 7 alpha hydroxycholesterol can be used. Genetic testing of the CYP27A1 gene is confirmatory and is increasingly being used as a first line test as part of symptom specific gene panels (genetic eye disease, ataxia, dementia).
Treatments for Glycerol Kinase Deficiency are targeted to treat the symptoms because there are no permanent treatments for this disease. The main way to treat these symptoms is by using corticosteroids, glucose infusion, or mineralocorticoids. Corticosteroids are steroid hormones that are naturally produced in the adrenal glands. These hormones regulate stress responses, carbohydrate metabolism, blood electrolyte levels, as well as other uses. The mineralocorticoids, such as aldosterone control many electrolyte levels and allow the kidneys to retain sodium. Glucose infusion is coupled with insulin infusion to monitor blood glucose levels and keep them stable.
Due to the multitude of varying symptoms of this disease, there is no specific treatment that will cure this disease altogether. The symptoms can be treated with many different treatments and combinations of medicines to try to find the correct combination to offset the specific symptoms. Everyone with Glycerol Kinase Deficiency has varying degrees of symptoms and thereby requires different medicines to be used in combination to treat the symptoms; however, this disease is not curable and the symptoms can only be managed, not treated fully.
Treatment of AIGA almost always consists of steroid pulse therapy or high-dose oral steroids and is not consistently effective. Much remains unclear regarding the reasons for recurrent anhidrosis.
Glycerol Kinase Deficiency causes the condition known as hyperglycerolemia, an accumulation of glycerol in the blood and urine. This excess of glycerol in bodily fluids can lead to many more potentially dangerous symptoms. Common symptoms include vomiting and lethargy. These tend to be the only symptoms, if any, present in adult GKD which has been found to present with fewer symptoms than infant or juvenile GKD. When GKD is accompanied by Duchenne Muscular Dystrophy and Adrenal Hypoplasia Congenita, also caused by mutations on the Xp21 chromosome, the symptoms can become much more severe. Symptoms visible at or shortly after birth include:
- cryptorchidism
- strabismus
- seizures
Some other symptoms that become more noticeable with time would be:
- metabolic acidosis
- hypoglycemia
- adrenal cortex insufficiency
- learning disabilities
- osteoporosis
- myopathy
Many of the physically visible symptoms, such as cryptorchidism, strabismus, learning disabilities, and myopathy, tend to have an added psychological effect on the subject due to the fact that they can set him or her apart from those without GKD. Cryptorchidism, the failure of one or both of the testes to descend to the scrotum, has been known to lead to sexual identity confusion amongst young boys because it is such a major physiological anomaly. Strabismus is the misalignment of one’s eyes. Typically, one is focused but the other is “lazy” and is directed inward or out ward (up and down is less common but does occur).
Differential diagnosis includes nephrogenic diabetes insipidus, neurogenic/central diabetes insipidus and psychogenic polydipsia. They may be differentiated by using the water deprivation test.
Recently, lab assays for ADH are available and can aid in diagnosis.
If able to rehydrate properly, sodium concentration should be nearer to the maximum of the normal range. This, however, is not a diagnostic finding, as it depends on patient hydration.
DDAVP can also be used; if the patient is able to concentrate urine following administration of DDAVP, then the cause of the diabetes insipidus is neurogenic; if no response occurs to DDAVP administration, then the cause is likely to be nephrogenic.
The gold standard of diagnosis is the parathyroid immunoassay. Once an elevated Parathyroid hormone has been confirmed, goal of diagnosis is to determine whether the hyperparathyroidism is primary or secondary in origin by obtaining a serum calcium level:
Tertiary hyperparathyroidism has a high PTH and a high serum calcium. It is differentiated from primary hyperparathyroidism by a history of chronic kidney failure and secondary hyperparathyroidism.