Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Depending on gestational age the differential diagnoses for abdominal pregnancy include miscarriage, intrauterine fetal death, placental abruption, an acute abdomen with an intrauterine pregnancy and a fibroid uterus with an intrauterine pregnancy .
The exact incidence of maternal mortality related to placenta accreta and its complications is unknown, but has been reported to be as high as 6-7% in case series and surveys.
To diagnose the rare primary abdominal pregnancy, Studdiford's criteria need to be fulfilled: tubes and ovaries should be normal, there is no abnormal connection (fistula) between the uterus and the abdominal cavity, and the pregnancy is related solely to the peritoneal surface without signs that there was a tubal pregnancy first. Studdiford's criteria were refined in 1968 by Friedrich and Rankin to include microscopic findings.
Early diagnosis is important and today facilitated by the use of sonography and the quantitative human chorionic gonadotropin (hCG) assay. As in other cases of ectopic pregnancy, risk factors are: previous tubal pregnancy, IVF therapy, tubal surgery, and a history of sexual infection.
Typical symptoms of an interstitial pregnancy are the classic signs of ectopic pregnancy, namely abdominal pain and vaginal bleeding. Hemorrhagic shock is found in almost a quarter of patients.; this explains the relatively high mortality rate.
In pregnant patients, sonography is the primary method to make the diagnosis, even when patients have no symptoms. The paucity of myometrium around the gestational sac is diagnostic, while, in contrast, the angular pregnancy has at least 5 mm of myometrium on all of its sides. Ultrasonic criteria for the diagnosis include an empty uterine cavity, a gestational sac separate from the uterine cavity, and a myometrial thinning of less than 5 mm around the gestational sac; typically the "interstitial line sign"—an echogenic line from the endometrial cavity to the corner next to the gestational mass—is seen. MRI can be used particularly when it is important to distinguish between an interstitial and angular pregnancy.
On average, the gestational age at presentation is about 7–8 weeks. In a 2007 series, 22% of patients presented with rupture and hemorrhagic shock, while a third of the patients were asymptomatic; the remainder had abdominal pain and/or vaginal bleeding. Cases that are not diagnosed until surgery show an asymmetrical bulge in the upper corner of the uterus.
A possible pregnancy must be considered in any woman who has abdominal pain or abnormal vaginal bleeding. A heterotopic pregnancy may have similar signs and symptoms as a normal intrauterine pregnancy, a normal intrauterine pregnancy and a ruptured ovarian cyst, a corpus luteum, or appendicitis. Blood tests and ultrasound can be used to differentiate these conditions.
A 2013 review concluded that there were no studies reporting on the link between intrauterine adhesions and long-term reproductive outcome after miscarriage, while similar pregnancy outcomes were reported subsequent to surgical management (e.g. D&C), medical management or conservative management (that is, watchful waiting). There is an association between surgical intervention in the uterus and the development of intrauterine adhesions, and between intrauterine adhesions and pregnancy outcomes, but there is still no clear evidence of any method of prevention of adverse pregnancy outcomes.
In theory, the recently pregnant uterus is particularly soft under the influence of hormones and hence, easily injured. D&C (including dilation and curettage, dilation and evacuation/suction curettage and manual vacuum aspiration) is a blind, invasive procedure, making it difficult to avoid endometrial trauma. Medical alternatives to D&C for evacuation of retained placenta/products of conception exist including misoprostol and mifepristone. Studies show this less invasive and cheaper method to be an efficacious, safe and an acceptable alternative to surgical management for most women. It was suggested as early as in 1993 that the incidence of IUA might be lower following medical evacuation (e.g. Misoprostol) of the uterus, thus avoiding any intrauterine instrumentation. So far, one study supports this proposal, showing that women who were treated for missed miscarriage with misoprostol did not develop IUA, while 7.7% of those undergoing D&C did. The advantage of misoprostol is that it can be used for evacuation not only following miscarriage, but also following birth for retained placenta or hemorrhaging.
Alternatively, D&C could be performed under ultrasound guidance rather than as a blind procedure. This would enable the surgeon to end scraping the lining when all retained tissue has been removed, avoiding injury.
Early monitoring during pregnancy to identify miscarriage can prevent the development of, or as the case may be, the recurrence of AS, as the longer the period after fetal death following D&C, the more likely adhesions may be to occur. Therefore, immediate evacuation following fetal death may prevent IUA.
The use of hysteroscopic surgery instead of D&C to remove retained products of conception or placenta is another alternative that could theoretically improve future pregnancy outcomes, although it could be less effective if tissue is abundant. Also, hysteroscopy is not a widely or routinely used technique and requires expertise.
There is no data to indicate that suction D&C is less likely than sharp curette to result in Asherman's. A recent article describes three cases of women who developed intrauterine adhesions following manual vacuum aspiration.
Patients with an ectopic pregnancy are generally at higher risk for a recurrence, however, there are no specific data for patients with an interstitial pregnancy. When a new pregnancy is diagnosed it is important to monitor the pregnancy by transvaginal sonography to assure that is it properly located, and that the surgically repaired area remains intact. Cesarean delivery is recommended to avoid uterine rupture during labor.
The history of a pregnancy event followed by a D&C leading to secondary amenorrhea or hypomenorrhea is typical. Hysteroscopy is the gold standard for diagnosis. Imaging by sonohysterography or hysterosalpingography will reveal the extent of the scar formation. Ultrasound is not a reliable method of diagnosing Asherman's Syndrome. Hormone studies show normal levels consistent with reproductive function.
The cause of the bleeding can often be discerned on the basis of the bleeding history, physical examination, and other medical tests as appropriate. The physical examination for evaluating vaginal bleeding typically includes visualization of the cervix with a speculum, a bimanual exam, and a rectovaginal exam. These are focused on finding the source of the bleeding and looking for any abnormalities that could cause bleeding. In addition, the abdomen is examined and palpated to ascertain if the bleeding is abdominal in origin. Typically a pregnancy test is performed as well. If bleeding was excessive or prolonged, a CBC may be useful to check for anemia. Abnormal endometrium may have to be investigated by a hysteroscopy with a biopsy or a dilation and curettage.
In an emergency or acute setting, vaginal bleeding can lead to hypovolemia.
The treatment will be directed at the cause. Hormonal bleeding problems during the reproductive years, if bothersome to the woman, are frequently managed by use of combined oral contraceptive pills.
In 2011, the International Federation of Gynaecology and Obstetrics (FIGO) recognized two systems designed to aid research, education, and clinical care of women with abnormal uterine bleeding (AUB) in the reproductive years.
Emergency exploratory laparotomy with cesarean delivery accompanied by fluid and blood transfusion are indicated for the management of uterine rupture. Depending on the nature of the rupture and the condition of the patient, the uterus may be either repaired or removed (cesarean hysterectomy). Delay in management places both mother and child at significant risk.
Placental abruption is suspected when a pregnant mother has sudden localized abdominal pain with or without bleeding. The fundus may be monitored because a rising fundus can indicate bleeding. An ultrasound may be used to rule out placenta praevia but is not diagnostic for abruption. The diagnosis is one of exclusion, meaning other possible sources of vaginal bleeding or abdominal pain have to be ruled out in order to diagnose placental abruption. Of note, use of magnetic resonance imaging has been found to be highly sensitive in depicting placental abruption, and may be considered if no ultrasound evidence of placental abruption is present, especially if the diagnosis of placental abruption would change management.
When the antepartum diagnosis of placenta accreta is made, it is usually based on ultrasound findings in the second or third trimester. Sonographic findings that may be suggestive of placenta accreta include:
1. Loss of normal hypoechoic retroplacental zone
2. Multiple vascular lacunae (irregular vascular spaces) within placenta, giving "Swiss cheese" appearance
3. Blood vessels or placental tissue bridging uterine-placental margin, myometrial-bladder interface, or crossing the uterine serosa
4. Retroplacental myometrial thickness of <1 mm
5. Numerous coherent vessels visualized with 3-dimensional power Doppler in basal view
Although there are isolated case reports of placenta accreta being diagnosed in the first trimester or at the time of abortion <20 weeks' gestational age, the predictive value of first-trimester ultrasound for this diagnosis remains unknown. Women with a placenta previa or "low-lying placenta" overlying a uterine scar early in pregnancy should undergo follow-up imaging in the third trimester with attention to the potential presence of placenta accreta.
Patients with a double uterus may need special attention during pregnancy as premature birth and malpresentation are common. Cesarean section was performed in 82% of patients reported by Heinonen.
Uterus didelphys, in certain studies, has also been found associated with higher rate of infertility, miscarriage, intrauterine growth retardation, and postpartum bleed.
Extrauterine pregnancies are non-viable and can be fatal to the mother if left untreated. The mortality rate for the extrauterine pregnancy is approximately 35%.
Although the risk of placental abruption cannot be eliminated, it can be reduced. Avoiding tobacco, alcohol and cocaine during pregnancy decreases the risk. Staying away from activities which have a high risk of physical trauma is also important. Women who have high blood pressure or who have had a previous placental abruption and want to conceive must be closely supervised by a doctor.
The risk of placental abruption can be reduced by maintaining a good diet including taking folic acid, regular sleep patterns and correction of pregnancy-induced hypertension.
It is crucial for women to be made aware of the signs of placental abruption, such as vaginal bleeding, and that if they experience such symptoms they must get into contact with their health care provider/the hospital "without any delay".
The major differential diagnosis is the uterine septum. The lack of agreement to separate these two entities makes it difficult to assess the results in the literature.
Oxytocin is typically used right after the delivery of the baby to prevent PPH. Misoprostol may be used in areas where oxytocin is not available. Early clamping of the umbilical cord does not decrease risks and may cause anemia in the baby, thus is usually not recommended.
Active management of the third stage is a method of shortening the stage between when the baby is born and when the placenta is delivered. This stage is when the mother is at risk of having a PPH. Active management involves giving a drug which helps the uterus contract before delivering the placenta by a gentle but sustained pull on the umbilical cord whilst exerting upward pressure on the lower abdomen to support the uterus.
Another method of active management which is not recommended now is fundal pressure. A review into this method found no research and advises controlled cord traction because fundal pressure can cause the mother unnecessary pain. Allowing the cord to drain appears to shorten the third stage and reduce blood loss but evidence around this subject is not strong enough to draw solid conclusions.
Nipple stimulation and breastfeeding triggers the release of natural oxytocin in the body, therefore it is thought that encouraging the baby to suckle soon after birth may reduce the risk of PPH for the mother. A review looking into this did not find enough good research to say whether or not nipple stimulation did reduce PPH. More research is needed to answer this question.
A transvaginal ultrasound can reveal the condition.
Helpful techniques to investigate the uterine structure are transvaginal ultrasonography and sonohysterography, hysterosalpingography, MRI, and hysteroscopy. More recently 3-D ultrasonography has been advocated as an excellent non-invasive method to delineate the condition.
The uterus should be evacuated and contractions should be stimulated using intravenous oxytocin; hysterectomy (the removal of the uterus) may be needed in some cases.
The diagnosis is strongly suggested by ultrasound (sonogram), but definitive diagnosis requires histopathological examination. On ultrasound, the mole resembles a bunch of grapes ("cluster of grapes" or "honeycombed uterus" or "snow-storm"). There is increased trophoblast proliferation and enlarging of the chorionic villi. Angiogenesis in the trophoblasts is impaired as well.
Sometimes symptoms of hyperthyroidism are seen, due to the extremely high levels of hCG, which can mimic the normal Thyroid-stimulating hormone (TSH).
A uterine scar from a previous cesarean section is the most common risk factor. (In one review, 52% had previous cesarean scars.) Other forms of uterine surgery that result in full-thickness incisions (such as a myomectomy), dysfunctional labor, labor augmentation by oxytocin or prostaglandins, and high parity may also set the stage for uterine rupture. In 2006, an extremely rare case of uterine rupture in a first pregnancy with no risk factors was reported.
A pelvic examination will typically reveal a double vagina and a double cervix. Investigations are usually prompted on the basis of such findings as well as when reproductive problems are encountered. Not all cases of uterus didelphys involve duplication of the cervix and vagina.
Helpful techniques to investigate the uterine structure are transvaginal ultrasonography and sonohysterography, hysterosalpingography, MRI, and hysteroscopy. More recently 3-D ultrasonography has been advocated as an excellent non-invasive method to evaluate uterine malformations.
Uterus didelphys is often confused with a complete uterine septum. Often more than one method of investigation is necessary to accurately diagnose the condition. Correct diagnosis is crucial as treatment for these two conditions is very different. Whereas most doctors recommend removal of a uterine septum, they generally concur that it is better not to operate on a uterus didelphys. In either case, a highly qualified reproductive endocrinologist should be consulted.
A pelvic examination will typically reveal a single vagina and a single cervix. Investigations are usually prompted on the basis of reproductive problems.
Helpful techniques to investigate the uterine structure are transvaginal ultrasonography and sonohysterography, hysterosalpingography, MRI, and hysteroscopy. More recently 3-D ultrasonography has been advocated as an excellent non-invasive method to evaluate uterine malformations.
Adenomyosis can vary widely in the extent and location of its invasion within the uterus. As a result, there are no established pathognomonic features to allow for a definitive diagnosis of adenomyosis through non-invasive imaging. Nevertheless, non-invasive imaging techniques such as transvaginal ultrasonography (TVUS) and magnetic resonance imaging (MRI) can both be used to strongly suggest the diagnosis of adenomyosis, guide treatment options, and monitor response to treatment. Indeed, TVUS and MRI are the only two practical means available to establish a pre-surgical diagnosis.