Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Definite diagnosis of brucellosis requires the isolation of the organism from the blood, body fluids, or tissues, but serological methods may be the only tests available in many settings. Positive blood culture yield ranges between 40% and 70% and is less commonly positive for "B. abortus" than "B. melitensis" or "B. suis". Identification of specific antibodies against bacterial lipopolysaccharide and other antigens can be detected by the standard agglutination test (SAT), rose Bengal, 2-mercaptoethanol (2-ME), antihuman globulin (Coombs’) and indirect enzymelinked immunosorbent assay (ELISA). SAT is the most commonly used serology in endemic areas. An agglutination titre greater than 1:160 is considered significant in nonendemic areas and greater than 1:320 in endemic areas. Due to the similarity of the O polysaccharide of "Brucella" to that of various other Gram-negative bacteria (e.g. "Francisella tularensis", "Escherichia coli", "Salmonella urbana", "Yersinia enterocolitica", "Vibrio cholerae", and "Stenotrophomonas maltophilia") the appearance of cross-reactions of class M immunoglobulins may occur. The inability to diagnose "B. canis" by SAT due to lack of cross-reaction is another drawback. False-negative SAT may be caused by the presence of blocking antibodies (the prozone phenomenon) in the α2-globulin (IgA) and in the α-globulin (IgG) fractions. Dipstick assays are new and promising, based on the binding of "Brucella" IgM antibodies, and found to be simple, accurate, and rapid. ELISA typically uses cytoplasmic proteins as antigens. It measures IgM, IgG, and IgA with better sensitivity and specificity than the SAT in most recent comparative studies. The commercial Brucellacapt test, a single-step immunocapture assay for the detection of total anti-"Brucella" antibodies, is an increasingly used adjunctive test when resources permit. PCR is fast and should be specific. Many varieties of PCR have been developed (e.g. nested PCR, realtime PCR and PCR-ELISA) and found to have superior specificity and sensitivity in detecting both primary infection and relapse after treatment. Unfortunately, these have yet to be standardized for routine use, and some centres have reported persistent PCR positivity after clinically successful treatment, fuelling the controversy about the existence of prolonged chronic brucellosis. Other laboratory findings include normal peripheral white cell count, and occasional leucopenia with relative lymphocytosis. The serum biochemical profiles are commonly normal.
According to a study published in 2002, an estimated 10–13% of farm animals are infected with "Brucella" species. Annual losses from the disease were calculated to be around 60 million dollars. Since 1932, government agencies have undertaken efforts to contain the disease. Currently, all cattle of ages 3–8 months is required to be given the "Brucella abortus" strain 19 vaccine.
Contagious bovine pleuropneumonia (CBPP - also known as lung plague), is a contagious bacterial disease that afflicts the lungs of cattle, buffalo, zebu, and yaks.
It is caused by the bacterium "Mycoplasma mycoides", and the symptoms are pneumonia and inflammation of the lung membranes. The incubation period is 20 to 123 days. It was particularly widespread in the United States in 1879, affecting herds from several states. The outbreak was so severe that it resulted in a trade embargo by the British government, blocking U.S. cattle exports to Britain and Canada. This prompted the United States to establish the Bureau of Animal Industry, set up in 1884 to eradicate the disease, which it succeeded in doing by 1892.
Louis Willems, a Belgian doctor, began pioneering work in the 1850s on animal inoculation against the disease.
The bacteria are widespread in Africa, the Middle East, Southern Europe, as well as parts of Asia. It is an airborne species, and can travel up to several kilometres in the right conditions.
There is no vaccine for SVD. Prevention measures are similar to those for foot-and-mouth disease: controlling animals imported from infected areas, and sanitary disposal of garbage from international aircraft and ships, and thorough cooking of garbage. Infected animals should be placed in strict quarantine. Eradication measures for the disease include quarantining infected areas, depopulation and disposal of infected and contact pigs, and cleaning and disinfecting
contaminated premises.
There is currently no known treatment for Aleutian virus. When evidence of ADV shows in a ferret, it is strongly recommended that a CEP (counterimmunoelectrophoresis) blood test or an IFA (immunoflourescent antibody) test be done. The CEP test is usually faster and less expensive than the IFA test, but the IFA test is more sensitive and can detect the disease in borderline cases.
Additionally modern methods such as Real-Time PCR allow for rapid and accurate detection as well as determination of the amount of viron present.
Prevention is best accomplished by stopping the spread of ADV. Any new ferret, or those who have been confirmed as serum positive for the virus should be perpetually isolated from other ferrets. All items that may have come into contact with the infected ferret should be cleaned with a 10% bleach solution.
This is a growing concern within mink producers as it is the most crucial infectious disease which affects farmed mink worldwide.
A ban on feeding meat and bone meal to cattle has resulted in a strong reduction in cases in countries where the disease was present. In disease-free countries, control relies on import control, feeding regulations, and surveillance measures.
In UK and US slaughterhouses, the brain, spinal cord, trigeminal ganglia, intestines, eyes, and tonsils from cattle are classified as specified risk materials, and must be disposed of appropriately.
An enhanced BSE-related feed ban is in effect in both the United States and Canada to help improve prevention and elimination of BSE.
Diagnosis of BSE continues to be a practical problem. It has an incubation period of months to years, during which no symptoms are noticed, though the pathway of converting the normal brain prion protein (PrP) into the toxic, disease-related PrP form has started. At present, virtually no way is known to detect PrP reliably except by examining "post mortem" brain tissue using neuropathological and immunohistochemical methods. Accumulation of the abnormally folded PrP form of PrP is a characteristic of the disease, but it is present at very low levels in easily accessible body fluids such as blood or urine. Researchers have tried to develop methods to measure PrP, but no methods for use in materials such as blood have been accepted fully.
The traditional method of diagnosis relies on histopathological examination of the medulla oblongata of the brain, and other tissues, "post mortem". Immunohistochemistry can be used to demonstrate prion protein accumulation.
In 2010, a team from New York described detection of PrP even when initially present at only one part in a hundred billion (10) in brain tissue. The method combines amplification with a novel technology called surround optical fiber immunoassay and some specific antibodies against PrP. After amplifying and then concentrating any PrP, the samples are labelled with a fluorescent dye using an antibody for specificity and then finally loaded into a microcapillary tube. This tube is placed in a specially constructed apparatus so it is totally surrounded by optical fibres to capture all light emitted once the dye is excited using a laser. The technique allowed detection of PrP after many fewer cycles of conversion than others have achieved, substantially reducing the possibility of artifacts, as well as speeding up the assay. The researchers also tested their method on blood samples from apparently healthy sheep that went on to develop scrapie. The animals’ brains were analysed once any symptoms became apparent. The researchers could, therefore, compare results from brain tissue and blood taken once the animals exhibited symptoms of the diseases, with blood obtained earlier in the animals’ lives, and from uninfected animals. The results showed very clearly that PrP could be detected in the blood of animals long before the symptoms appeared. After further development and testing, this method could be of great value in surveillance as a blood- or urine-based screening test for BSE.
Diagnosis of BMCF depends on a combination of history and symptoms, histopathology and detection in the blood or tissues of viral antibodies by ELISA or of viral DNA by PCR. The characteristic histologic lesions of MCF are lymphocytic arteritis with necrosis of the blood vessel wall and the presence of large T lymphocytes mixed with other cells. The similarity of MCF clinical signs to other enteric diseases, for example blue tongue, mucosal disease and foot and mouth make laboratory diagnosis of MCF important. The world organisation for animal health recognises histopathology as the definitive diagnostic test, but laboratories have adopted other approaches with recent developments in molecular virology. No vaccine has as yet been developed.
Antibody (Ig) ELISAs are used to detect historical BVDV infection; these tests have been validated in serum, milk and bulk milk samples. Ig ELISAs do not diagnose active infection but detect the presence of antibodies produced by the animal in response to viral infection. Vaccination also induces an antibody response, which can result in false positive results, therefore it is important to know the vaccination status of the herd or individual when interpreting results. A standard test to assess whether virus has been circulating recently is to perform an Ig ELISA on blood from 5–10 young stock that have not been vaccinated, aged between 9 and 18 months. A positive result indicates exposure to BVDV, but also that any positive animals are very unlikely to be PI animals themselves. A positive result in a pregnant female indicates that she has previously been either vaccinated or infected with BVDV and could possibly be carrying a PI fetus, so antigen testing of the newborn is vital to rule this out. A negative antibody result, at the discretion of the responsible veterinarian, may require further confirmation that the animal is not in fact a PI.
At a herd level, a positive Ig result suggests that BVD virus has been circulating or the herd is vaccinated. Negative results suggest that a PI is unlikely however this naïve herd is in danger of severe consequences should an infected animal be introduced. Antibodies from wild infection or vaccination persist for several years therefore Ig ELISA testing is more valuable when used as a surveillance tool in seronegative herds.
Possible complications include the horse becoming a chronic carrier of the disease, asphyxia due to enlarged lymph nodes compressing the larynx or windpipe, bastard strangles (spreading to other areas of the body), pneumonia, guttural pouch filled with pus, abscesses, purpura haemorrhagica, and heart disease. The average length for the course of this disease is 23 days.
Antigen ELISA and rtPCR are currently the most frequently performed tests to detect virus or viral antigen. Individual testing of ear tissue tag samples or serum samples is performed. It is vital that repeat testing is performed on positive samples to distinguish between acute, transiently infected cattle and PIs. A second positive result, acquired at least three weeks after the primary result, indicates a PI animal. rtPCR can also be used on bulk tank milk (BTM) samples to detect any PI cows contributing to the tank. It is reported that the maximum number of contributing cows from which a PI can be detected is 300.
Both intramuscular and intranasal vaccines are available. Isolation of new horses for 4 to 6 weeks, immediate isolation of infected horses, and disinfection of stalls, water buckets, feed troughs, and other equipment will help prevent the spread of strangles. As with any contagious disease, handwashing is a simple and effective tool.
In sheep, the disease is also called the "circling disease". The most obvious signs for the veterinarians are neurological, especially lateral deviation of the neck and head.
Because of the number of possible viral/bacterial precursors to BRD, there are a number of treatment options circling around the three main aggravators of the disease: Viruses, Bacteria, and Stress.
Swine vesicular disease is most commonly brought into a herd by the introduction of a subclinically infected pig.
The disease can be transmitted in feed containing infected meat scraps, or by direct contact with infected feces (such as in an improperly cleaned truck).
Vaccinations exist for several biological BRD precursors, but the multitude of possible precursors complicates the process of choosing a vaccine regime. Additionally, vaccines are not completely effective in stopping the disease, but are merely helpful in mitigation. Many of the problems with vaccine effectiveness rest with improper use, such as failing to time vaccine doses appropriately, or not administering them before shipping.
Vaccines are available for a number of viral/bacterial agents, including IBR, PI3, BVD, BRSV, Pasteurella, and "Haemophilus somnus". Many of these vaccines can be given simultaneously, because of their similar dosing schedule. For example, IBR, PI3, BVD, and BRSV vaccines are often sold in combination with each other.
MAP is capable of causing Johne's-like symptoms in humans, though difficulty in testing for MAP infection presents a diagnostic hurdle.
Clinical similarities are seen between Johne's disease in ruminants and inflammatory bowel disease in humans, and because of this, some researchers contend the organism is a cause of Crohn's disease. However, epidemiologic studies have provided variable results; in certain studies, the organism (or an immune response directed against it) has been much more frequently found in patients with Crohn's disease than asymptomatic people.
Variola caprina (goat pox) is a contagious viral disease caused by a pox virus that affects goats. The virus usually spreads via the respiratory system, and sometimes spreads through abraded skin. It is most likely to occur in crowded stock. Sources of the virus include cutaneous lesions, saliva, nasal secretions and faeces. There are two types of the disease: the papulo-vesicular form and the nodular form (stone pox). The incubation period is usually 8–13 days, but it may be as short as four days.
It is thought the same virus spreads sheep pox, to which European sheep breeds are highly susceptible. The virus may be present in dried scabs for up to six months.
In endemic areas the morbidity rate is 70–90% and the mortality rate is 5–10%. The mortality rate may reach nearly 100% in imported animals. Resistant animals may show only a mild form of the disease, which may be missed as only a few lesions are present, usually around the ears or the tail.
The simplest procedure for 'in field diagnosis' is the detection of antibodies by latex agglutination (LAT) as it is quick and simple to run, and has a long shelf-life. Other procedures used for diagnosis include growth inhibition disc tests (GI), direct and indirect fluorescent antibody tests, complement fixation tests (CFT), indirect haemagglutination test (IHA), ELISA and PCR. These have varying degrees of efficacy.
Isolation of "M. capricolum "subsp. "capripneumoniae" from clinical samples is the only way to definitively diagnose the infection but it is not normally performed as it is time consuming and difficult.
Listeriosis is an infectious but not contagious disease caused by the bacterium "Listeria monocytogenes", far more common in domestics animals (domestic mammals and poultry), especially ruminants, than in human beings. It can also occur in feral animals—among others, game animals—as well as in poultry and other birds.
The causative bacterium lives in the soil and in poorly made silage, and is acquired by ingestion. It is not contagious; over the course of a 30-year observation period of sheep disease in Morocco, the disease only appeared in the late 2000s (decade) when feeding bag-ensiled corn became common. In Iceland, the disease is called "silage sickness".
The disease is sporadic, but can occur as farm outbreaks in ruminants.
Three main forms are usually recognized throughout the affected species:
- encephalitis, the most common form in ruminants
- late abortion
- gastro-intestinal septicemia with liver damage, in monogastric species as well as in preruminant calves and lambs
Listeriosis in animals can sometimes be cured with antibiotics (tetracyclines, chloramphenicol and benzyl penicillin) when diagnosed early. Goats, for example, can be treated upon first noticing the disease's characteristic expression in the animal's face, but is generally fatal.
Aleutian disease, also known as mink plasmacytosis, is a disease which causes spontaneous abortion and death in minks and ferrets. It is caused by "Carnivore amdoparvovirus 1" (also known as "Aleution diease virus", ADV), a highly contagious parvovirus in the genus "Amdoparvovirus".
The virus has been found as a natural infection in the "Mustelidae" family within mink, ferrets, otters, polecats, stone and pine martens and within other varying carnivores such as skunks, genets, foxes and raccoons. This is most commonly explained as because they all share resources and habitats.
The most frequent clinical sign following "B. suis" infection is abortion in pregnant females, reduced milk production, and infertility. Cattle can also be transiently infected when they share pasture or facilities with infected pigs, and "B. suis" can be transmitted by cow’s milk.
Swine also develop orchitis (swelling of the testicles), lameness (movement disability), hind limb paralysis, or spondylitis (inflammation in joints).
The Mantoux tuberculin skin test is often used to screen people at high risk for TB. Those who have been previously immunized may have a false-positive test result. The test may be falsely negative in those with sarcoidosis, Hodgkin's lymphoma, malnutrition, and most notably, active tuberculosis. Interferon gamma release assays, on a blood sample, are recommended in those who are positive to the Mantoux test. These are not affected by immunization or most environmental mycobacteria, so they generate fewer false-positive results. However, they are affected by "M. szulgai", "M. marinum", and "M. kansasii". IGRAs may increase sensitivity when used in addition to the skin test, but may be less sensitive than the skin test when used alone.
There is no specific treatment for the condition.
Control may rely on boosting bird immunity, preventing group mixing and faecal spreading.
In an endemic herd, only a minority of the animals develops clinical signs; most animals either eliminate the infection or become asymptomatic carriers. The mortality rate is about 1%, but up to 50% of the animals in the herd can be asymptomatically infected, resulting in losses in production. Once the symptoms appear, paratuberculosis is progressive and affected animals eventually die. The percentage of asymptomatic carriers that develop overt disease is unknown.