Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
Cultures are not often taken or needed as most cases resolve either with time or typical antibiotics. Swabs for bacterial culture are necessary if the history and signs suggest bacterial conjunctivitis but there is no response to topical antibiotics. Viral culture may be appropriate in epidemic case clusters.
A patch test is used to identify the causative allergen in the case where conjunctivitis is caused by allergy.
Conjunctival scrapes for cytology can be useful in detecting chlamydial and fungal infections, allergy, and dysplasia, but are rarely done because of the cost and the general lack of laboratory staff experienced in handling ocular specimens. Conjunctival incisional biopsy is occasionally done when granulomatous diseases ("e.g.", sarcoidosis) or dysplasia are suspected.
Classification can be either by cause or by extent of the inflamed area.
Treatment of herpes of the eye is different based on its presentation: epithelial keratitis is caused by live virus while stromal disease is an immune response and metaherpetic ulcer results from inability of the corneal epithelium to heal:
The disease incidence varies widely depending on the geographical location. The most extensive epidemiological survey on this subject has been carried out by Dharmasena et al. who analysed the number of neonates who developed neonatal conjunctivitis in England from 2000 to 2011. In addition to the incidence of this sight threatening infection they also investigated the time trends of the disease. According to them the incidence of Neonatal conjunctivitis (Ophthalmia Neonatorum) in England was 257 (95% confidence interval: 245 to 269) per 100,000 in 2011.
A specific clinical diagnosis of HSV as the cause of dendritic keratitis can usually be made by ophthalmologists and optometrists based on the presence of characteristic clinical features. Diagnostic testing is seldom needed because of its classic clinical features and is not useful in stromal keratitis as there is usually no live virus. Laboratory tests are indicated in complicated cases when the clinical diagnosis is uncertain and in all cases of suspected neonatal herpes infection:
- Corneal smears or impression cytology specimens can be analyzed by culture, antigen detection, or fluorescent antibody testing. Tzanck smear, i.e.Papanicolaou staining of corneal smears, show multinucleated giant cells and intranuclear inclusion bodies, however, the test is low in sensitivity and specificity.
- DNA testing is rapid, sensitive and specific. However, its high cost limits its use to research centers.
- Demonstration of HSV is possible with viral culture.
- Serologic tests may show a rising antibody titer during primary infection but are of no diagnostic assistance during recurrent episodes.
If the allergen is encountered and the symptoms are mild, a cold compress can be used to provide relief.
A detailed history allows physicians to determine whether the presenting symptoms are due to an allergen or another source. Diagnostic tests such as conjunctival scrapings to look for eosinophils are helpful in determining the cause of the allergic response. Antihistamines, medication that stabilizes mast cells, and NSAIDs are safe and usually effective. Corticosteroids are reserved for more severe cases of ocular allergy disease, and their use should be monitored by an eye care physician due to possible side-effects. When an allergen is identified, the person should avoid the allergen as much as possible.
Antibiotic ointment is typically applied to the newborn's eyes within 1 hour of birth as prevention against gonococcal ophthalmia. This maybe erythromycin, tetracycline, or silver nitrate.
The symptoms of phlyctenular keratoconjunctivitis are primarily treated with application of an appropriate corticosteroid eye drop, such as prednisolone acetate (Pred Forte) or loteprednol (Lotemax). Loteprednol is increasingly preferred due to its lower risk of elevating intraocular pressure. The corticosteroid suppresses the immune response, reducing inflammation and improving most symptoms.
The causative agent (i.e. the source of the antigen that triggered the hypersensitive immune response) should also be identified. "Staphylococcus aureus" is usually the primary suspect, along with "Mycobacterium tuberculosis" in areas where TB is endemic, followed by "Chlamydia trachomatis". Active bacterial infections may be treated with a topical antibiotic or a combination antibiotic-steroid eye drop, such as tobramycin/dexamethasone (Tobradex). An oral tetracycline antibiotic (such as doxycycline) may be used in systemic or particularly severe/intractable infections. Erythromycin may be an effective alternative, especially in pediatric cases where the side effects of tetracyclines are unacceptable.
Artificial tears can reduce dryness and discomfort from corneal lesions. Photophobic discomfort can be mitigated with dark sunglasses.
Keratoconjunctivitis is inflammation ("-itis") of the cornea and conjunctiva.
When only the cornea is inflamed, it is called "keratitis"; when only the conjunctiva is inflamed, it is called "conjunctivitis".
There are several potential causes of the inflammation:
- Keratoconjunctivitis sicca is used when the inflammation is due to dryness. ("Sicca" means "dryness" in medical contexts.) It occurs with 20% of rheumatoid arthritis patients.
- The term "Vernal keratoconjunctivitis" (VKC) is used to refer to keratoconjunctivitis occurring in spring, and is usually considered to be due to allergens.
- "Atopic keratoconjunctivitis" is one manifestation of atopy.
- "Epidemic keratoconjunctivitis" is caused by an adenovirus infection.
- "Infectious bovine keratoconjunctivitis" (IBK) is a disease affecting cattle caused by the bacteria "Moraxella bovis".
- "Pink eye in sheep and goat" is another infectious keratoconjunctivitis of veterinary concern, mostly caused by "Chlamydophila pecorum"
- "Superior limbic keratoconjunctivitis" is thought to be caused by mechanical trauma.
- "Keratoconjunctivitis photoelectrica" (arc eye) means inflammation caused by photoelectric UV light. It is a type of ultraviolet keratitis. Such UV exposure can be caused by arc welding without wearing protective eye glass, or by high altitude exposure from sunlight reflected from snow ("snow blindness"). The inflammation will only appear after about 6 to 12 hours. It can be treated by rest, as the inflammation usually heals after 24–48 hours. Proper eye protection should be worn to prevent keratoconjunctivitis photoelectrica.
The patient needs urgent examination by an ophthalmologist, preferably a vitreoretinal specialist who will usually decide for urgent intervention to provide intravitreal injection of potent antibiotics. Injections of vancomycin (to kill Gram-positive bacteria) and ceftazidime (to kill Gram-negative bacteria) are routine. Even though antibiotics can have negative impacts on the retina in high concentrations, the facts that visual acuity worsens in 65% of endophthalmitis patients and prognosis gets poorer the longer an infection goes untreated make immediate intervention necessary. Endophthalmitis patients may also require an urgent surgery (pars plana vitrectomy), and evisceration may be necessary to remove a severe and intractable infection which could result in a blind and painful eye.
Steroids may be injected intravitreally if the cause is allergic.
In patients with acute endophthalmitis, combined steroid treatment with antibiotics have been found to improve visual outcomes, versus patients only treated with antibiotics, but any improvements on the resolution acute endophthalmitis is unknown.
A Cochrane Review sought to evaluate the effects of perioperative antibiotic prophylaxis for endophthalmitis following cataract surgery. The review showed high-certainty evidence that antibiotic injections in the eye with cefuroxime at the end of surgery lowers the chance of endophthalmitis. Also, the review showed moderate evidence that antibiotic eye drops (levofloxacin or chloramphenicol) with antibiotic injections (cefuroxime or penicillin) probably lowers the chance of endophthalmitis compared with injections or eye drops alone. Separate studies from the research showed that a periocular injection of penicillin with chloramphenicol-suphadimidine eye drops, and an intracameral cefuroxime injection with topical levofloxacin resulted in a risk reduction of developing endophthalmitis following cataract surgery for subjects.
In the case of intravitreal injections, however, antibiotics are not effective. Studies have demonstrated no difference between rates of infection with and without antibiotics when intravitreal injections are performed. The only consistent method of antibioprophylaxis in this instance is a solution of povidone-iodine applied pre-injection.
Dry eyes can usually be diagnosed by the symptoms alone. Tests can determine both the quantity and the quality of the tears. A slit lamp examination can be performed to diagnose dry eyes and to document any damage to the eye.
A Schirmer's test can measure the amount of moisture bathing the eye. This test is useful for determining the severity of the condition. A five-minute Schirmer's test with and without anesthesia using a Whatman #41 filter paper 5 mm wide by 35 mm long is performed. For this test, wetting under 5 mm with or without anesthesia is considered diagnostic for dry eyes.
If the results for the Schirmer's test are abnormal, a Schirmer II test can be performed to measure reflex secretion. In this test, the nasal mucosa is irritated with a cotton-tipped applicator, after which tear production is measured with a Whatman #41 filter paper. For this test, wetting under 15 mm after five minutes is considered abnormal.
A tear breakup time (TBUT) test measures the time it takes for tears to break up in the eye. The tear breakup time can be determined after placing a drop of fluorescein in the cul-de-sac.
A tear protein analysis test measures the lysozyme contained within tears. In tears, lysozyme accounts for approximately 20 to 40 percent of total protein content.
A lactoferrin analysis test provides good correlation with other tests.
The presence of the recently described molecule Ap4A, naturally occurring in tears, is abnormally high in different states of ocular dryness. This molecule can be quantified biochemically simply by taking a tear sample with a plain Schirmer test. Utilizing this technique it is possible to determine the concentrations of Ap4A in the tears of patients and in such way diagnose objectively if the samples are indicative of dry eye.
The Tear Osmolarity Test has been proposed as a test for dry eye disease. Tear osmolarity may be a more sensitive method of diagnosing and grading the severity of dry eye compared to corneal and conjunctival staining, tear break-up time, Schirmer test, and meibomian gland grading. Others have recently questioned the utility of tear osmolarity in monitoring dry eye treatment.
Scleritis is best detected by examining the sclera in daylight; retracting the lids helps determine the extent of involvement. Other aspects of the eye exam (i.e. visual acuity testing, slit lamp examination, etc.) may be normal. Scleritis may be differentiated from episcleritis by using phenylephrine or neosynephrine eye drops, which causes blanching of the blood vessels in episcleritis, but not in scleritis.
Ancillary tests CT scans, MRIs, and ultrasonographies can be helpful, but do not replace the physical examination.
Intraocular pressure should be measured as part of the routine eye examination.
It is usually only elevated by iridocyclitis or acute-closure glaucoma, but not by relatively benign conditions.
In iritis and traumatic perforating ocular injuries, the intraocular pressure is usually low.
The diagnosis of episcleritis is based upon the history and physical examination. The history should be explored for the presence of the diseases associated with episcleritis, and the symptoms they cause, such as rash, arthritis, venereal disease, and recent viral infection. Episcleritis may be differentiated from scleritis by using phenylephrine or neosynephrine eye drops, which causes blanching of the blood vessels in episcleritis, but not in scleritis. A blue color to the sclera suggests scleritis, rather than episcleritis.
After anesthetizing the eye with medication, the conjunctiva may be moved with a cotton swab to observe the location of the enlarged blood vessels.
There is no way to prevent keratoconjunctivitis sicca. Complications can be prevented by use of wetting and lubricating drops and ointments.
The syndrome is marked by the appearance of characteristic lesions, known as phlyctenules, on the cornea and/or conjunctiva. These usually manifest as small (1 - 3 or 1 - 4 mm) raised nodules, pinkish-white or yellow in color, which may ulcerate (or, more rarely, necrose) and are often surrounded by dilated blood vessels. Corneal lesions are usually triangular in shape, with the base at the limbus and the apex pointing towards the center of the cornea.
Based on severity, authors have classified VKC into clinical grades:
Grade 0 - Absence of symptoms
Grade 1 MILD - Symptoms but no corneal involvement
Grade 2 MODERATE - Symptoms with photophobia but no corneal involvement
Grade 3 SEVERE - Symptoms, photophobia, milfd to moderate SPK's OR with Diffuse SPK or corneal ulcer
Scleritis can be classified as anterior scleritis and posterior scleritis. Anterior scleritis is the most common variety, accounting for about 98% of the cases. It is of two types : Non-necrotising and necrotising. Non-necrotising scleritis is the most common, and is further classified into diffuse and nodular type based on morphology. Necrotising scleritis accounts for 13% of the cases. It can occur with or without inflammation.
In an eye with iridocyclitis, (inflammation of both the iris and ciliary body), the involved pupil will be smaller than the uninvolved, due to reflex muscle spasm of the sphincter muscle of the iris.
Generally, conjunctivitis does not affect the pupils.
With acute angle-closure glaucoma, the pupil is generally fixed in mid-position, oval, and responds sluggishly to light, if at all.
Shallow anterior chamber depth may indicate a predisposition to one form of glaucoma (narrow angle) but requires slit-lamp examination or other special techniques to determine it.
In the presence of a "red eye", a shallow anterior chamber may indicate acute glaucoma, which requires immediate attention.
VKC is thought to be an allergic disorder in which IgE mediated mechanism play a role. Such patients often give family history of other atopic diseases such as hay fever, asthma or eczema, and their peripheral blood shows eosinophilia and increased serum IgE levels.
Diagnosis is clinical, seeking a history of eye injury. An important differential diagnosis is Vogt-Koyanagi-Harada syndrome (VKH), which is thought to have the same pathogenesis, without a history of surgery or penetrating eye injury.
Still experimental, skin tests with soluble extracts of human or bovine uveal tissue are said to elicit delayed hypersensitivity responses in these patients. Additionally, circulating antibodies to uveal antigens have been found in patients with SO and VKH, as well as those with long-standing uveitis, making this a less than specific assay for SO and VKH.
Often, treatment is not necessary, because episcleritis is a self-limiting condition. Artificial tears may be used to help with irritation and discomfort. More severe cases can be treated with either topical corticosteroids or oral non-steroidal anti-inflammatory drugs.
Ketorolac, a topical NSAID, may be used, but it is not more effective than artificial tears and it causes more side effects.
The bacteria invade the lacrimal glands of the eye, causing keratitis, uveitis, and corneal ulceration. Cattle show signs of pain, increased lacrimation, excessive blinking, and conjunctivitis. More severe cases may show systemic signs such as anorexia and weight loss. Chronic untreated cases can become blind. Diagnosis is usually based on the clinical signs, but the bacteria can be cultured from lacrimal swabs, or visualised on smears of lacrimal secretions.