Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is disagreement as to how cases of KTS should be classified if there is an arteriovenous fistula present. Although several authorities have suggested that the term Parkes-Weber syndrome is applied in those cases, ICD-10 currently uses the term "Klippel–Trénaunay–Weber syndrome".
Diagnosis is generally made by magnetic resonance imaging (MRI), particularly using a specific imaging technique known as a gradient-echo sequence MRI, which can unmask small or punctate lesions that may otherwise remain undetected. These lesions are also more conspicuous on FLAIR imaging compared to standard T2 weighing. FLAIR imaging is different from gradient sequences. Rather, it is similar to T2 weighing but suppresses free-flowing fluid signal. Sometimes quiescent CCMs can be revealed as incidental findings during MRI exams ordered for other reasons. Many cavernous hemangiomas are detected "accidentally" during MRIs searching for other pathologies. These "incidentalomas" are generally asymptomatic. In the case of hemorrhage, however, a CT scan is more efficient at showing new blood than an MRI, and when brain hemorrhage is suspected, a CT scan may be ordered first, followed by an MRI to confirm the type of lesion that has bled.
Sometimes the lesion appearance imaged by MRI remains inconclusive. Consequently neurosurgeons will order a cerebral angiogram or magnetic resonance angiogram (MRA). Since CCMs are low flow lesions (they are hooked into the venous side of the circulatory system), they will be angiographically occult (invisible). If a lesion is discernible via angiogram in the same location as in the MRI, then an arteriovenous malformation (AVM) becomes the primary concern.
The surgical treatment involves the resection of the extracranial venous package and ligation of the emissary communicating vein. In some cases of SP, surgical excision is performed for cosmetic reasons. The endovascular technique has been described by transvenous approach combined with direct puncture and the recently endovascular embolization with Onyx.
KTS is a complex syndrome, and no single treatment is applicable for everyone. Treatment is decided on a case-by-case basis with the individual's doctors.
At present, many of the symptoms may be treated, but there is no cure for Klippel–Trenaunay syndrome.
a combination of various vascular malformations. They are 'complex' because they involve a combination of two different types of vessels.
- CVM: capillary venous malformation
- CLM: capillary lymphatic malformation
- LVM: lymphatic venous malformation
- CLVM: capillary lymphatic venous malformation. CLVM is associated with Klippel-Trenaunay syndrome
- AVM-LM: Arteriovenous malformation- lymphatic malformation
- CM-AVM: capillary malformation- arteriovenous malformation
All fast-flow malformations are malformations involving arteries. They constitute about 14% of all vascular malformations.
- Arterial malformation
- Arteriovenous fistula (AVF) : a lesion with a direct communication via fistulae between an artery and a vein.
- Arteriovenous malformation : a lesion with a direct connection between an artery and a vein, without an intervening capillary bed, but with an interposed nidus of dysplastic vascular channels in between.
Sinus pericranii (SP) is a rare disorder characterized by a congenital (or occasionally, acquired) epicranial venous malformation of the scalp. Sinus pericranii is an abnormal communication between the intracranial and extracranial venous drainage pathways. Treatment of this condition has mainly been recommended for aesthetic reasons and prevention of hemorrhage.
The incidence in the general population is roughly 0.5%, and clinical symptoms typically appear between 20 to 30 years of age. Once thought to be strictly congenital, these vascular lesions have been found to occur "de novo". It may appear either sporadically or exhibit autosomal dominant inheritance.
Prenatal Diagnosis:
- Aymé, "et al." (1989) reported prenatal diagnosis of Fryns syndrome by sonography between 24 and 27 weeks.
- Manouvrier-Hanu et al. (1996) described the prenatal diagnosis of Fryns syndrome by ultrasonographic detection of diaphragmatic hernia and cystic hygroma. The diagnosis was confirmed after termination of the pregnancy. The fetus also had 2 erupted incisors; natal teeth had not been mentioned in other cases of Fryns syndrome.
Differential Diagnosis:
- McPherson et al. (1993) noted the phenotypic overlap between Fryns syndrome and the Pallister–Killian syndrome (601803), which is a dysmorphic syndrome with tissue-specific mosaicism of tetrasomy 12p.
- Veldman et al. (2002) discussed the differentiation between Fryns syndrome and Pallister–Killian syndrome, noting that differentiation is important to genetic counseling because Fryns syndrome is an autosomal recessive disorder and Pallister–Killian syndrome is usually a sporadic chromosomal aberration. However, discrimination may be difficult due to the phenotypic similarity. In fact, in some infants with 'coarse face,' acral hypoplasia, and internal anomalies, the initial diagnosis of Fryns syndrome had to be changed because mosaicism of isochromosome 12p was detected in fibroblast cultures or kidney tissue. Although congenital diaphragmatic hernia is a common finding in both syndromes, bilateral congenital diaphragmatic hernia had been reported only in patients with Fryns syndrome until the report of the patient with Pallister–Killian syndrome by Veldman et al. (2002).
- Slavotinek (2004) reviewed the phenotypes of 52 reported cases of Fryns syndrome and reevaluated the diagnostic guidelines. She concluded that congenital diaphragmatic hernia and distal limb hypoplasia are strongly suggestive of Fryns syndrome, with other diagnostically relevant findings including pulmonary hypoplasia, craniofacial dysmorphism, polyhydramnios, and orofacial clefting. Slavotinek (2004) stated that other distinctive anomalies not mentioned in previous guidelines include ventricular dilatation or hydrocephalus, agenesis of the corpus callosum, abnormalities of the aorta, dilatation of the ureters, proximal thumbs, and broad clavicles.
"Prenatal diagnosis (fetal ultrasound):"
Today the diagnosis of double aortic arch can be obtained in-utero in experienced centers. Scheduled repair soon after birth in symptomatic patients can relieve tracheal compression early and therefore potentially prevent the development of severe tracheomalacia.
"Chest X-ray:"
Plain chest x-rays of patients with double aortic arch may appear normal (often) or show a dominant right aortic arch or two aortic arches . There might be evidence of tracheal deviation and/or compression. Sometimes patients present with radiologic findings of pneumonia.
"Barium swallow (esophagraphy):"
Historically the esophagram used to be the gold standard for diagnosis of double aortic arch. In patients with double aortic arch the esophagus shows left- and right-sided indentations from the vascular compression. Due to the blood-pressure related movement of the aorta and the two arches, moving images of the barium-filled esophagus can demonstrate the typical pulsatile nature of the obstruction. The indentation from a dominant right arch is usually deeper and higher compared to the dent from the left arch.
"Bronchoscopy:"
Although bronchoscopy is not routinely done in patients with suspected or confirmed double aortic arch, it can visualize sites and severity of pulsatile tracheal compression.
"Echocardiography:"
In babies under the age of 12 months, echocardiography is considered to be sensitive and specific in making the diagnosis of double aortic arch when both arches are open. Non-perfused elements of other types of vascular rings (e.g. left arch with atretic (closed) end) or the ligamentum arteriosum might be difficult to visualize by echocardiography.
"Computed tomography (CT):"
Computed tomography after application of contrast media is usually diagnostically accurate. It shows the relationship of the arches to the trachea and bronchi.
"Magnetic resonance imaging (MRI):"
Magnetic resonance imaging provides excellent images of the trachea and surrounding vascular structures and has the advantage of not using radiation for imaging compared to Computed tomography.
"Cardiac catherization/aortography:"
Today patients with double aortic arch usually only undergo cardiac catherization to evaluate the hemodynamics and anatomy of associated congenital cardiac defects. Through a catheter in the ascending aorta contrast media is injected and the resulting aortography may be used to delineate the anatomy of the double aortic arch including sites of narrowing in the left aortic arch. Aortography can also be used to visualize the origin of all head and arm vessels originating from the two arches.
Adult presentation in diastematomyelia is unusual. With modern imaging techniques, various types of spinal dysraphism are being diagnosed in adults with increasing frequency. The commonest location of the lesion is at first to third lumbar vertebrae. Lumbosacral adult diastematomyelia is even rarer. Bony malformations and dysplasias are generally recognized on plain x-rays. MRI scanning is often the first choice of screening and diagnosis. MRI generally give adequate analysis of the spinal cord deformities although it has some limitations in giving detailed bone anatomy. Combined myelographic and post-myelographic CT scan is the most effective diagnostic tool in demonstrating the detailed bone, intradural and extradural pathological anatomy of the affected and adjacent spinal canal levels and of the bony spur.
Prenatal ultrasound diagnosis of this anomaly is usually possible in the early to mid third-trimester. An extra posterior echogenic focus between the fetal spinal laminae is seen with splaying of the posterior elements, thus allowing for early surgical intervention and have a favorable prognosis. Prenate ultrasound could also detect whether the diastematomyelia is isolated, with the skin intact or association with any serious neural tube defects. Progressive neurological lesions may result from the "tethering cord syndrome" (fixation of the spinal cord) by the diastematomyelia phenomenon or any of the associated disorders such as myelodysplasia, dysraphia of the spinal cord.
Diagnosis may be delayed for several months because the infant's early behavior appears to be relatively normal. Transillumination, an examination in which light is passed through body tissues, can be used to diagnose hydranencephaly. An accurate, confirmed diagnosis is generally impossible until after birth, though prenatal diagnosis using fetal ultrasonography (ultrasound) can identify characteristic physical abnormalities that exist. Through thorough clinical evaluation, via physical findings, detailed patient history, and advanced imaging techniques, such as angiogram, computerized tomography (CT scan), magnetic resonance imaging (MRI), or more rarely transillumination after birth are the most accurate diagnostic techniques. However, diagnostic literature fails to provide a clear distinction between severe obstructive hydrocephalus and hydranencephaly, leaving some children with an unsettled diagnosis.
Preliminary diagnosis may be made in utero via standard ultrasound, and can be confirmed with a standard anatomy ultrasound. This sometimes proves to provide a misdiagnosis of differential diagnoses including bilaterally symmetric schizencephaly (a less destructive developmental process on the brain), severe hydrocephalus (cerebrospinal fluid excess within the skull), and alobar holoprosencephaly (a neurological developmental anomaly). Once destruction of the brain is complete, the cerebellum, midbrain, thalami, basal ganglia, choroid plexus, and portions of the occipital lobes typically remain preserved to varying degrees. Though the cerebral cortex is absent, in most cases the fetal head remains enlarged due to the continued production by the choroid plexus of cerebrospinal fluid that is inadequately reabsorbed causing increased intracranial pressure.
It can be diagnosed with CT scan, angiography, transesophageal echocardiography, or cardiac MRI. Unfortunately, less invasive and expensive testing, such as transthoracic echocardiography and CT scanning are generally less sensitive.
Surgery
Surgical intervention is warranted in patients who present with new onset neurological signs and symptoms or have a history of progressive neurological manifestations which can be related to this abnormality. The surgical procedure required for the effective treatment of diastematomyelia includes decompression (surgery) of neural elements and removal of bony spur. This may be accomplished with or without resection and repair of the duplicated dural sacs. Resection and repair of the duplicated dural sacs is preferred since the dural abnormality may partly contribute to the "tethering" process responsible for the symptoms of this condition.
Post-myelographic CT scanning provides individualized detailed maps that enable surgical treatment of cervical diastematomyelia, first performed in 1983.
Observation
Asymptomatic patients do not require surgical treatment. These patients should have regular neurological examinations since it is known that the condition can deteriorate. If any progression is identified, then a resection should be performed.
Surgical correction is indicated in all double aortic arch patients with obstructive symptoms (stridor, wheezing, pulmonary infections, poor feeding with choking). If symptoms are absent a conservative approach (watchful waiting) can be reasonable. Children with very mild symptoms may outgrow their symptoms but need regular follow-up.
A "Partial anomalous pulmonary venous connection" (or "Partial anomalous pulmonary venous drainage" or "Partial anomalous pulmonary venous return") is a congenital defect where the left atrium is the point of return for the blood from some (but not all) of the pulmonary veins.
It is less severe than total anomalous pulmonary venous connection which is a life-threatening anomaly requiring emergent surgical correction, usually diagnosed in the first few days of life. Partial anomalous venous connection may be diagnosed at any time from birth to old age. The severity of symptoms, and thus the likelihood of diagnosis, varies significantly depending on the amount of blood flow through the anomalous connections. In less severe cases, with smaller amounts of blood flow, diagnosis may be delayed until adulthood, when it can be confused with other causes of pulmonary hypertension. There is also evidence that a significant number of mild cases are never diagnosed, or diagnosed incidentally. It is associated with other vascular anomalies, and some genetic syndromes such as Turner syndrome.
Some patients have a few or no histopathologic abnormalities. Histological examination of a biopsy may show an increase in the number and size of capillaries and veins (rarely lymphatics), dilated capillaries located in the deeper dermis, and hyperplasia and swollen endothelial cells with occasional dilated veins and venous lakes.
DVA can be diagnosed through the Cerebral venous sinus thrombosis with collateral drainage. DVA can also be found diagnosed with Sturge–Weber syndrome and can be found through leptomeningeal angiomatosis. Demyelinating disease has also been found to enlarge Medulla veins.
A developmental venous anomaly (DVA, formerly known as venous angioma) is a congenital variant of the cerebral venous drainage. On imaging it is seen as a number of small deep parenchymal veins converging toward a larger collecting vein.
In France, Aymé, "et al." (1989) estimated the prevalence of Fryns syndrome to be 0.7 per 10,000 births based on the diagnosis of 6 cases in a series of 112,276 consecutive births (live births and perinatal deaths).
There is no standard treatment for hydranencephaly. Treatment is symptomatic and supportive. Hydrocephalus may be treated with surgical treatment of a shunt, which often grants a much better prognosis and greater quality of life.
The prognosis for children with hydranencephaly is generally quite poor. Death often occurs in the first year of life, but other children may live several years.
Medical text identifies that hydranencephalic children simply have only their brain stem function remaining, thus leaving formal treatment options as symptomatic and supportive. Severe hydrocephalus causing macrocephaly, a larger than average head circumference, can easily be managed by placement of a shunt and often displays a misdiagnosis of another lesser variation of cephalic condition due to the blanketing nature of hydrocephalus. Plagiocephaly, the asymmetrical distortion of the skull, is another typical associated condition that is easily managed through positioning and strengthening exercises to prevent torticollis, a constant spasm or extreme tightening of the neck muscles.
As the causes of local gigantism are varied, treatment depends on the particular condition. Treatment may range from antibiotics and other medical therapy, to surgery in order to correct the anatomical anomaly.
The prognosis is favorable in most patients with an isolated cutaneous abnormality. In the majority of cases, both the vivid red marking and the difference in circumference of the extremities regress spontaneously during the first year of life. It is theorized that this may be due to the normal maturation process, with thickening of the epidermis and dermis. Improvements for some patients can continue for up to 10 years, while in other cases, the marbled skin may persist for the patient's lifetime.
One study reported an improvement in lesions in 46% of patients within 3 years. If CMTC persists into adulthood, it can result in complaints due to paresthesia, increased sensitivity to cold and pain, and the formation of ulcers.
Few reports included long-term follow up of CMTC into adolescence and adulthood. While about 50% of patients seem to show definite improvement in the reticular vascular pattern, the exact incidence and cause of persistent cases are unknown.
Patients who are diagnosed with AAOCA at or before age 30 years are eligible for this study. They should have otherwise normal heart or only minor defects such as Atrial septal defect, Ventricular septal defect, Patent ductus arteriosus, bicuspid aortic valve, mild pulmonary stenosis etc.
Patients who have other major heart problems that require operations are currently not included in this Cohort study. Any other problems with coronary arteries are also not included.
Oral propranolol appears to be the most effective treatment for reducing the size of capillary hemangiomas in children and is more effective than placebo, observation without intervention, or oral corticosteroids.