Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
There are several methods to diagnose meningeal syphilis. One of the most common ways include visualizing the organisms by immunofluorescence and dark field microscopy. Dark field microscopy initially had the finding that the spirochete has a corkscrew appearance and that it is spirillar and gram (-) bacteria. Another method would also be through the screening test and serology. Serology includes two types of antibody test: Nontreponemal antibody test and Treponemal antibody test (specific test). The Nontreponemal antibody test screens with VDRL (Venereal Disease Research Lab) and RPR (Rapid Plasma Reagin). The Treponemal antibody test (specific test) confirms with FTA-ABS (Fluorescent treponemal antibody-absorption). Brain imaging and MRI scans may be used when diagnosing patients; however, they do not prove to be as effective as specific tests. Specific tests for treponemal antibody are typically more expensive because the earliest anitbodies bind to spirochetes. These tests are usually more specific and remain positive in patients with other treponemal diseases.
Dark ground microscopy of serous fluid from a chancre may be used to make an immediate diagnosis. Hospitals do not always have equipment or experienced staff members, and testing must be done within 10 minutes of acquiring the sample. Sensitivity has been reported to be nearly 80%; therefore the test can only be used to confirm a diagnosis, but not to rule one out. Two other tests can be carried out on a sample from the chancre: direct fluorescent antibody testing and nucleic acid amplification tests. Direct fluorescent testing uses antibodies tagged with fluorescein, which attach to specific syphilis proteins, while nucleic acid amplification uses techniques, such as the polymerase chain reaction, to detect the presence of specific syphilis genes. These tests are not as time-sensitive, as they do not require living bacteria to make the diagnosis.
People should only be diagnosed with encephalitis if they have a decreased or altered level of consciousness, lethargy, or personality change for at least twenty-four hours without any other explainable cause. Diagnosing encephalitis is done via a variety of tests:
- Brain scan, done by MRI, can determine inflammation and differentiate from other possible causes.
- EEG, in monitoring brain activity, encephalitis will produce abnormal signal.
- Lumbar puncture (spinal tap), this helps determine via a test using the cerebral-spinal fluid, obtained from the lumbar region.
- Blood test
- Urine analysis
- Polymerase chain reaction (PCR) testing of the cerebrospinal fluid, to detect the presence of viral DNA which is a sign of viral encephalitis.
Blood tests are divided into nontreponemal and treponemal tests.
Nontreponemal tests are used initially, and include venereal disease research laboratory (VDRL) and rapid plasma reagin (RPR) tests. False positives on the nontreponemal tests can occur with some viral infections, such as varicella (chickenpox) and measles. False positives can also occur with lymphoma, tuberculosis, malaria, endocarditis, connective tissue disease, and pregnancy.
Because of the possibility of false positives with nontreponemal tests, confirmation is required with a treponemal test, such as treponemal pallidum particle agglutination (TPHA) or fluorescent treponemal antibody absorption test (FTA-Abs). Treponemal antibody tests usually become positive two to five weeks after the initial infection. Neurosyphilis is diagnosed by finding high numbers of leukocytes (predominately lymphocytes) and high protein levels in the cerebrospinal fluid in the setting of a known syphilis infection.
Vaccination is available against tick-borne and Japanese encephalitis and should be considered for at-risk individuals. Post-infectious encephalomyelitis complicating smallpox vaccination is avoidable, for all intents and purposes, as smallpox is nearly eradicated. Contraindication to Pertussis immunization should be observed in patients with encephalitis.
The most popular treatment forms for any type of syphilis uses penicillin, which has been an effective treatment used since the 1940s.
Other forms also include Benzathine penicillin, which is usually used for primary and secondary syphilis (it has no resistance to penicillin however). Benzathine penicillin is used for long acting form, and if conditions worsen, penicillin G is used for late syphilis.
If a pregnant mother is identified as being infected with syphilis, treatment can effectively prevent congenital syphilis from developing in the fetus, especially if he or she is treated before the sixteenth week of pregnancy. The fetus is at greatest risk of contracting syphilis when the mother is in the early stages of infection, but the disease can be passed at any point during pregnancy, even during delivery (if the child had not already contracted it). A woman in the secondary stage of syphilis decreases her fetus's risk of developing congenital syphilis by 98% if she receives treatment before the last month of pregnancy. An afflicted child can be treated using antibiotics much like an adult; however, any developmental symptoms are likely to be permanent.
Kassowitz’s law is an empirical observation used in context of congenital syphilis stating that the greater the duration between the infection of the mother and conception, the better is the outcome for the infant. Features of a better outcome include less chance of stillbirth and of developing congenital syphilis.
The Centers for Disease Control and Prevention recommends treating symptomatic or babies born to infected mother with unknown treatment status with procaine penicillin G, 50,000 U/kg dose IM a day in a single dose for 10 days. Treatment for these babies can vary on a case by case basis. Treatment cannot reverse any deformities, brain, or permanent tissue damage that has already occurred.
The diagnosis is considered when a child with congenital rubella develops progressive spasticity, ataxia, mental deterioration, and seizures. Testing involves at least CSF examination and serology. Elevated CSF total protein and globulin and elevated rubella antibody titers in CSF and serum occur. CT may show ventricular enlargement due to cerebellar atrophy and white matter disease. Brain biopsy may be necessary to exclude other causes of encephalitis or encephalopathy. Rubella virus cannot usually be recovered by viral culture or immunohistologic testing.
The diagnosis of limbic encephalitis is extremely difficult and it is usual for the diagnosis to be delayed for weeks. The key diagnostic test (detection of specific auto-antibodies in cerebrospinal fluid) is not routinely offered by most immunology laboratories. Some of the rarer auto-antibodies (e.g., NMDAR) have no commercially available assay and can only be measured by a very small number of research laboratories worldwide, further delaying diagnosis by weeks or months. Most patients with limbic encephalitis are initially diagnosed with herpes simplex encephalitis, because the two syndromes cannot be distinguished clinically. HHV-6 (human herpes virus 6) encephalitis is also clinically indistinguishable from limbic encephalitis.
There are two sets of diagnostic criteria used. The oldest are those proposed by Gultekin "et al." in 2000.
A revised set of criteria were proposed by Graus and Saiz in 2005.
The main distinction between the two sets of criteria is whether or not the detection of a paraneoplastic antibody is needed for diagnosis.
EEG: Mostly nonspecific slowing and epileptiform activity arising from temporal lobes.
A brain biopsy will reveal the presence of infection by pathogenic amoebas. In GAE, these present as general inflammation and sparse granules. On microscopic examination, infiltrates of amoebic cysts and/or trophozoites will be visible.
GAE, in general, must be treated by killing the pathogenic amoebas which cause it.
Herpesviral Encephalitis can be treated with high-dose intravenous acyclovir. Without treatment, HSE results in rapid death in approximately 70% of cases; survivors suffer severe neurological damage. When treated, HSE is still fatal in one-third of cases, and causes serious long-term neurological damage in over half of survivors. Twenty percent of treated patients recover with minor damage. Only a small population of survivors (2.5%) regain completely normal brain function. Indeed, many amnesic cases in the scientific literature have etiologies involving HSE. Earlier treatment (within 48 hours of symptom onset) improves the chances of a good recovery. Rarely, treated individuals can have relapse of infection weeks to months later. There is evidence that aberrant inflammation triggered by herpes simplex can result in granulomatous inflammation in the brain, which responds to steroids. While the herpes virus can be spread, encephalitis itself is not infectious. Other viruses can cause similar symptoms of encephalitis, though usually milder (Herpesvirus 6, varicella zoster virus, Epstein-Barr, cytomegalovirus, coxsackievirus, etc.).
PRP is very rare and similar to SSPE but without intracellular inclusion bodies.
Only 20 patients have been identified since first recognized in 1974.
Development of new therapies has been hindered by the lack of appropriate animal model systems for some important viruses and also because of the difficulty in conducting human clinical trials for diseases that are rare. Nonetheless, numerous innovative approaches to antiviral therapy are available including candidate thiazolide and purazinecarboxamide derivatives with potential broad-spectrum antiviral efficacy. New herpes virus drugs include viral helicase-primase and terminase inhibitors. A promising new area of research involves therapies based on enhanced understanding of host antiviral immune responses.
Treatments of proven efficacy are currently limited mostly to herpes viruses and human immunodeficiency virus. The herpes virus is of two types: herpes type 1 (HSV-1, or oral herpes) and herpes type 2 (HSV-2, or genital herpes). Although there is no particular cure; there are treatments that can relieve the symptoms. Drugs like Famvir, Zovirax, and Valtrex are among the drugs used, but these medications can only decrease pain and shorten the healing time. They can also decrease the total number of outbreaks in the surrounding. Warm baths also may relive the pain of genital herpes.
Human Immunodeficiency Virus Infection (HIV) is treated by using a combination of medications to fight against the HIV infection in the body. This is called antiretroviral therapy (ART). ART is not a cure, but it can control the virus so that a person can live a longer, healthier life and reduce the risk of transmitting HIV to others around him. ART involves taking a combination of HIV medicines (called an HIV regimen) every day, exactly as prescribed by the doctor. These HIV medicines prevent HIV Virus from multiplying (making copies of itself in the body), which reduces the amount of HIV in the body. Having less HIV in the body gives the immune system a chance to recover and fight off infections and cancers. Even though there is still some HIV in the body, the immune system is strong enough to fight off infections and cancers. By reducing the amount of HIV in the body, HIV medicines also reduce the risk of transmitting the virus to others. ART is recommended for all people with HIV, regardless of how long they’ve had the virus or how healthy they are. If left untreated, HIV will attack the immune system and eventually progress to AIDS.
Death from congenital syphilis is usually due to bleeding into the lungs.
Most individuals with HSE show a decrease in their level of consciousness and an altered mental state presenting as confusion, and changes in personality. Increased numbers of white blood cells can be found in patient's cerebrospinal fluid, without the presence of pathogenic bacteria and fungi. Patients typically have a fever and may have seizures. The electrical activity of the brain changes as the disease progresses, first showing abnormalities in one temporal lobe of the brain, which spread to the other temporal lobe 7–10 days later. Imaging by CT or MRI shows characteristic changes in the temporal lobes (see Figure). Definite diagnosis requires testing of the cerebrospinal fluid (CSF) by a lumbar puncture (spinal tap) for presence of the virus. The testing takes several days to perform, and patients with suspected Herpes encephalitis should be treated with acyclovir immediately while waiting for test results.
There have been several proposed diagnostic criteria for Encephalitis Lethargica. One, which has been widely accepted, includes an acute or subacute encephalitic illness where all other known causes of encephalitis have been excluded. Another diagnostic criterion, suggested more recently,says that the diagnosis of Encephalitis Lethargica "may be considered if the patient’s condition cannot be attributed to any other known neurological condition and that they show the following signs: influenza-like signs; hypersomnolence (hypersomnia), wakeability, opthalmoplegia (paralysis of the muscles that control the movement of the eye), and psychiatric changes."
Current or previous infection can be detected through a blood test. However, some authors note that such complement-fixation tests are insensitive and should not be used for diagnosis. Dr. Clare A. Dykewicz, "et al." state,
Clinical diagnosis of LCM can be made by the history of prodrome symptoms and by considering the period of time before the onset of meningitis symptoms, typically 15–21 days for LCM.
Pathological diagnosis of congenital infection is performed using either an immunofluorescent antibody (IFA) test or an enzyme immunoassay to detect specific antibody in blood or cerebrospinal fluid. A PCR assay has been recently developed which may be used in the future for prenatal diagnosis; however, the virus is not always present in the blood or CSF when the affected child is born." Diagnoses is subject to methodological shortcomings in regard to specificity and sensitivity of assays used. For this reason, LCMV may be more common than is realized.
Another detection assay is the reverse transcription polymerase chain reaction (RT-PCR) tests which may detect nucleic acids in the blood and cerebrospinal fluid.(CSF) Virus isolation is not used for diagnosis in most cases but it can be isolated from the blood or nasopharyngeal fluid early in the course of the disease, or from CSF in patients with meningitis. LCMV can be grown in a variety of cell lines including BHK21, L and Vero cells, and it may be identified with immuno-fluorescence. A diagnosis can also be made by the intracerebral inoculation of blood or CSF into mice.
As in humans, the sensitivity of testing methods for rodents contributes to the accuracy of diagnosis. LCMV is typically identified through serology. However, in an endemically infected colony, more practical methods include MAP (mouse antibody production) and PCR testing. Another means of diagnosis is introducing a known naïve adult mouse to the suspect rodent colony. The introduced mouse will seroconvert, allowing use of immunofluorescence antibody (IFA), MFIA or ELISA to detect antibodies.
Animal pathogens exist as facultative parasites. They are an exceptionally rare cause of meningoencephalitis.
clinical diagnosis include recurrent or recent herpes infection fever, headache, mental symptom, convulsion, disturbance of consciousness, focal signs.
CSF ,EEG, CT, MRI are responsive to specific antivirus agent.
Definite diagnosis – besides the above, the followings are needed
CSF: HSV-antigen,HSV-Antibody, brain biopsy or pathology: Cowdry in intranuclear
CSF: the DNA of the HSV(PCR)
cerebral tissue or specimen of the CSF:HSV
except other viral encephalitis
Cerebrospinal fluid (CSF) analysis shows a large number of white blood cells. Typically small mature lymphocytes are the majority of cells seen, with monocytes and neutrophils making up the rest. Definitive diagnosis is based on histopathology, either a brain biopsy or post-mortem evaluation (necropsy). A CT scan or MRI will show patchy, diffuse, or multifocal lesions. For a number of years, the basic treatment was some type of corticosteroid in combination with one or more immunosuppressive drugs, typically cytosine arabinoside and/or cyclosporine or other medications such as azathioprine, cyclophosphamide, or procarbazine, of which were usually added one at a time to the corticosteroid until a successful combination was found. There is evidence that treatment with radiation therapy for focal GME provides the longest periods of remission.
Modern treatment approaches to encephalitis lethargica include immunomodulating therapies, and treatments to remediate specific symptoms.
Treatment for encephalitis lethargica in the early stages is patient stabilization, which may be very difficult. There is little evidence so far of a consistent effective treatment for the initial stages, though some patients given steroids have seen improvement.The disease becomes progressive, with evidence of brain damage similar to Parkinson's disease.
Treatment is then symptomatic. Levodopa (-DOPA) and other anti-parkinson drugs often produce dramatic responses; however, most patients given -DOPA experience s of the disease that are short lived.
Japanese encephalitis is diagnosed by commercially available tests detecting JE virus-specific IgM antibodies in serum and /or cerebrospinal fluid, for example by IgM capture ELISA.
JE virus IgM antibodies are usually detectable 3 to 8 days after onset of illness and persist for 30 to 90 days, but longer persistence has been documented. Therefore, positive IgM antibodies occasionally may reflect a past infection or vaccination. Serum collected within 10 days of illness onset may not have detectable IgM, and the test should be repeated on a convalescent sample. For patients with JE virus IgM antibodies, confirmatory neutralizing antibody testing should be performed.
Confirmatory testing in the US is only available at CDC and a few specialized reference laboratories. In fatal cases, nucleic acid amplification, and virus culture of autopsy tissues can be useful. Viral antigen can be shown in tissues by indirect fluorescent antibody staining.