Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Blood tests are neede to differentiate FVII deficiency from other bleeding disorders. Typical is a discordance between the prolonged prothrombin time (PT) and normal levels for the activated partial thromboplastin time (APTT). FVII levels are <10IU/dl in homozygous individuals, and between 20-60 in heterozygous carriers. The FCVII: C assay supports the diagnosis.
The FVII gene (F7) is found on chromosome 13q34. Heterogeneous mutations have been described in FVII deficient patients.
The condition is diagnosed by blood tests in the laboratory when it is noted that special blood clotting test are abnormal. Specifically prothrombin time (PT) or activated partial thromboplastin time(aPTT) are prolonged. The diagnosis is confirmed by an assay detecting very low or absent FXII levels.
The FXII (F12) gene is found on chromosome 5q33-qter.
In hereditary angioedema type III an increased activity of factor XII has been described.
There are several treatments available for factor VII deficiency; they all replace deficient FVII.
1. Recombinant FVIIa concentrate (rFVIIa) is a recombinant treatment that is highly effective and has no risk of fluid overload or viral disease. It may be the optimal therapy.
2. Plasma derived Factor VII concentrate (pdFVII) : This treatment is suitable for surgery but can lead to thrombosis. It is virus attenuated.
3. Prothrombin complex concentrate (PCC) containing factor VII: this treatment is suitable for surgery, but has a risk of thrombosis. It is virus attenuated.
4. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
In congenital FXII deficiency treatment is not necessary. In acquired FXII deficiency the underlying problem needs to be addressed.
There are several treatments available for bleeding due to factor X deficiency, however a specifi FX concentrate is not available (2009).
1. Prothrombin complex concentrate (PCC) supplies FX with a risk of thrombosis.
2. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
3. If vitamin K levels are low, vitamin K can be supplied orally or parenterally.
Treatment of FX deficiency in amyloidosis may be more complex and involve surgery (splenectomy) and chemotherapy.
Blood tests are needed to differentiate FX deficiency from other bleeding disorders. Typical are normal thrombin time, prolonged prothrombin time (PT) and prolonged partial thromboplastin time(PTT). FX antigen and its coagulant activity can be used to classify the severity of the condition:
1. Type I has low levels of FX antigen and activity.
2. Type II has low coagulant activity but normal or borderline FX antigen levels.
The FX (F10) gene is found on chromosome 13q34. Heterogeneous mutations have been described in FX deficient patients.
There are two main types of protein C assays, activity and antigen (immunoassays). Commercially available activity assays are based on chromogenic assays that use activation by snake venom in an activating reagent, or clotting and enzyme-linked immunosorbant assays. Repeated testing for protein C functional activity allows differentiation between transient and congenital deficiency of protein C.
Initially, a protein C activity (functional) assay can be performed, and if the result is low, a protein C antigen assay can be considered to determine the deficiency subtype (Type I or Type II). In type I deficiencies, normally functioning protein C molecules are made in reduced quantity. In type II deficiencies normal amounts of dysfunctional protein C are synthesized.
Antigen assays are immunoassays designed to measure the quantity of protein C regardless of its function. Type I deficiencies are therefore characterized by a decrease in both activity and antigen protein C assays whereas type II deficiencies exhibit normal protein C antigen levels with decreased activity levels.
The human protein C gene (PROC) comprises 9 exons, and protein C deficiency has been linked to over 160 mutations to date. Therefore, DNA testing for protein C deficiency is generally not available outside of specialized research laboratories.
Manifestation of purpura fulminans as it is usually associated with reduced protein C plasma concentrations of <5 mg IU/dL. The normal concentration of plasma protein C is 70 nM (4 µg/mL) with a half live of approximately 8 hours. Healthy term neonates, however, have lower (and more variable) physiological levels of protein C (ranging between 15-55 IU/dL) than older children or adults, and these concentrations progressively increase throughout the first 6 months of life. Protein C levels may be <10 IU/dL in preterm or twin neonates or those with respiratory distress without manifesting either purpura fulminans or disseminated intravascular coagulation.
There are divergent views as to whether everyone with an unprovoked episode of thrombosis should be investigated for thrombophilia. Even those with a form of thrombophilia may not necessarily be at risk of further thrombosis, while recurrent thrombosis is more likely in those who have had previous thrombosis even in those who have no detectable thrombophilic abnormalities. Recurrent thromboembolism, or thrombosis in unusual sites (e.g. the hepatic vein in Budd-Chiari syndrome), is a generally accepted indication for screening. It is more likely to be cost-effective in people with a strong personal or family history of thrombosis. In contrast, the combination of thrombophilia with other risk factors may provide an indication for preventative treatment, which is why thrombophilia testing may be performed even in those who would not meet the strict criteria for these tests. Searching for a coagulation abnormality is not normally undertaken in patients in whom thrombosis has an obvious trigger. For example, if the thrombosis is due to immobilization after recent orthopedic surgery, it is regarded as "provoked" by the immobilization and the surgery and it is less likely that investigations will yield clinically important results.
When venous thromboembolism occurs when a patient is experiencing transient major risk factors such as prolonged immobility, surgery, or trauma, testing for thrombophilia is not appropriate because the outcome of the test would not change a patient's indicated treatment. In 2013, the American Society of Hematology, as part of recommendations in the Choosing Wisely campaign, cautioned against overuse of thrombophilia screening; false positive results of testing would lead to people inappropriately being labeled as having thrombophilia, and being treated with anticoagulants without clinical need
In the United Kingdom, professional guidelines give specific indications for thrombophilia testing. It is recommended that testing be done only after appropriate counseling, and hence the investigations are usually not performed at the time when thrombosis is diagnosed but at a later time. In particular situations, such as retinal vein thrombosis, testing is discouraged altogether because thrombophilia is not regarded as a major risk factor. In other rare conditions generally linked with hypercoagulability, such as cerebral venous thrombosis and portal vein thrombosis, there is insufficient data to state for certain whether thrombophilia screening is helpful, and decisions on thrombophilia screening in these conditions are therefore not regarded as evidence-based. If cost-effectiveness (quality-adjusted life years in return for expenditure) is taken as a guide, it is generally unclear whether thrombophilia investigations justify the often high cost, unless the testing is restricted to selected situations.
Recurrent miscarriage is an indication for thrombophilia screening, particularly antiphospholipid antibodies (anti-cardiolipin IgG and IgM, as well as lupus anticoagulant), factor V Leiden and prothrombin mutation, activated protein C resistance and a general assessment of coagulation through an investigation known as thromboelastography.
Women who are planning to use oral contraceptives do not benefit from routine screening for thrombophilias, as the absolute risk of thrombotic events is low. If either the woman or a first-degree relative has suffered from thrombosis, the risk of developing thrombosis is increased. Screening this selected group may be beneficial, but even when negative may still indicate residual risk. Professional guidelines therefore suggest that alternative forms of contraception be used rather than relying on screening.
Thrombophilia screening in people with arterial thrombosis is generally regarded unrewarding and is generally discouraged, except possibly for unusually young patients (especially when precipitated by smoking or use of estrogen-containing hormonal contraceptives) and those in whom revascularization, such as coronary arterial bypass, fails because of rapid occlusion of the graft.
Heterozygous protein C deficiency occurs in 0.14–0.50% of the general population. Based on an estimated carrier rate of 0.2%, a homozygous or compound heterozygous protein C deficiency incidence of 1 per 4 million births could be predicted, although far fewer living patients have been identified. This low prevalence of patients with severe genetic protein C deficiency may be explained by excessive fetal demise, early postnatal deaths before diagnosis, heterogeneity in the cause of low concentrations of protein C among healthy individuals and under-reporting.
The incidence of protein C deficiency in individuals who present with clinical symptoms has been reported to be estimated at 1 in 20,000.
When suspected, the diagnosis can be confirmed by laboratory measurement of IgA level in the blood. SigAD is an IgA level < 7 mg/dL with normal IgG and IgM levels (reference range 70–400 mg/dl for adults; children somewhat less).
Individuals presenting with Type III galactosemia must consume a lactose- and galactose-restricted diet devoid of dairy products and mucilaginous plants. Dietary restriction is the only current treatment available for GALE deficiency. As glycoprotein and glycolipid metabolism generate endogenous galactose, however, Type III galactosemia may not be resolved solely through dietary restriction.
Purpura fulminans is rare and most commonly occurs in babies and small children but can also be a rare manifestation in adults when it is associated with severe infections. For example, Meningococcal septicaemia is complicated by purpura fulminans in 10–20% of cases among children. Purpura fulminans associated with congenital (inherited) protein C deficiency occurs in 1:500,000–1,000,000 live births.
Tests for thrombophilia include complete blood count (with examination of the blood film), prothrombin time, partial thromboplastin time, thrombodynamics test, thrombin time and reptilase time, lupus anticoagulant, anti-cardiolipin antibody, anti-β2 glycoprotein 1 antibody, activated protein C resistance, fibrinogen tests, factor V Leiden and prothrombin mutation, and basal homocysteine levels. Testing may be more or less extensive depending on clinical judgement and abnormalities detected on initial evaluation.
For hereditary cases, the patient must have at least 2 abnormal tests plus family history.
The amount of fresh frozen plasma required to reverse disseminated intravascular coagulation associated with purpura fulminans may lead to complications of fluid overload and death, especially in neonates, such as transfusion-related acute lung injury. Exposure to multiple plasma donors over time increases the cumulative risk for transfusion-associated viral infection and allergic reaction to donor proteins found in fresh frozen plasma.
Allergic reactions and alloantibody formation are also potential complications, as with any protein replacement therapy.
Concomitant warfarin therapy in subjects with congenital protein C deficiency is associated with an increased risk of warfarin skin necrosis.
Prognosis is excellent, although there is an association with autoimmune disease. Of note, selective IgA deficiency can complicate the diagnosis of one such condition, celiac disease, as the deficiency masks the high levels of certain IgA antibodies usually seen in celiac disease.
As opposed to the related condition CVID, selective IgA deficiency is not associated with an increased risk of cancer.
Patients with Selective IgA deficiency are at risk of anaphylaxis from blood transfusions. These patients should receive IgA free containing blood products and ideally blood from IgA-deficient donors.
No treatment is available for most of these disorders. Mannose supplementation relieves the symptoms in PMI-CDG (CDG-Ib) for the most part, even though the hepatic fibrosis may persist. Fucose supplementation has had a partial effect on some SLC35C1-CDG (CDG-IIc or LAD-II) patients.
The diagnosis of Nezelof syndrome will indicate a deficiency of T-cells, additionally in ascertaining the condition the following is done:
The differential diagnosis for this condition consists of acquired immune deficiency syndrome and severe combined immunodeficiency syndrome
There are 2 forms of epimerase deficiency: benign RBC deficiency and Severe liver deficiency. Severe form is similar to galactosemia.
The basic tests performed when an immunodeficiency is suspected should include a full blood count (including accurate lymphocyte and granulocyte counts) and immunoglobulin levels (the three most important types of antibodies: IgG, IgA and IgM).
Other tests are performed depending on the suspected disorder:
- Quantification of the different types of mononuclear cells in the blood (i.e. lymphocytes and monocytes): different groups of T lymphocytes (dependent on their cell surface markers, e.g. CD4+, CD8+, CD3+, TCRαβ and TCRγδ), groups of B lymphocytes (CD19, CD20, CD21 and Immunoglobulin), natural killer cells and monocytes (CD15+), as well as activation markers (HLA-DR, CD25, CD80 (B cells).
- Tests for T cell function: skin tests for delayed-type hypersensitivity, cell responses to mitogens and allogeneic cells, cytokine production by cells
- Tests for B cell function: antibodies to routine immunisations and commonly acquired infections, quantification of IgG subclasses
- Tests for phagocyte function: reduction of nitro blue tetrazolium chloride, assays of chemotaxis, bactericidal activity.
Due to the rarity of many primary immunodeficiencies, many of the above tests are highly specialised and tend to be performed in research laboratories.
Criteria for diagnosis were agreed in 1999. For instance, an antibody deficiency can be diagnosed in the presence of low immunoglobulins, recurrent infections and failure of the development of antibodies on exposure to antigens. The 1999 criteria also distinguish between "definitive", "probable" and "possible" in the diagnosis of primary immunodeficiency. "Definitive" diagnosis is made when it is likely that in 20 years, the patient has a >98% chance of the same diagnosis being made; this level of diagnosis is achievable with the detection of a genetic mutation or very specific circumstantial abnormalities. "Probable" diagnosis is made when no genetic diagnosis can be made, but the patient has all other characteristics of a particular disease; the chance of the same diagnosis being made 20 years later is estimated to be 85-97%. Finally, a "possible" diagnosis is made when the patient has only some of the characteristics of a disease are present, but not all.
Pyruvate dehydrogenase deficiency can be diagnosed via the following methods:
- Blood test (Lactate and pyruvate levels)
- Urine analysis
- Magnetic resonance spectroscopy
- MRI
Congenital disorder of glycosylation type IIc or Leukocyte adhesion deficiency-2 (LAD2) is a type of leukocyte adhesion deficiency attributable to the absence of neutrophil sialyl-LewisX, a ligand of P- and E-selectin on vascular endothelium. It is associated with "SLC35C1".
This disorder was discovered in two unrelated Israeli boys 3 and 5 years of age, each the offspring of consanguineous parents. Both had severe mental retardation, short stature, a distinctive facial appearance, and the Bombay (hh) blood phenotype, and both were secretor- and Lewis-negative. They both had had recurrent severe bacterial infections similar to those seen in patients with LAD1, including pneumonia, peridontitis, otitis media, and localized cellulitis. Similar to that in patients with LAD1, their infections were accompanied by pronounced leukocytosis (30,000 to 150,000/mm) but an absence of pus formation at sites of recurrent cellulitis. In vitro studies revealed a pronounced defect in neutrophil motility. Because the genes for the red blood cell H antigen and for the secretor status encode for distinct α1,2-fucosyltransferases and the synthesis of Sialyl-LewisX requires an α1,3-fucosyltransferase, it was postulated that a general defect in fucose metabolism is the basis for this disorder. It was subsequently found that GDP-L-fucose transport into Golgi vesicles was specifically impaired, and then missense mutations in the GDP-fucose transporter cDNA of three patients with LAD2 were discovered. Thus, GDP-fucose transporter deficiency is a cause of LAD2.
The differential diagnosis of pyruvate dehydrogenase deficiency can consist of either D-Lactic acidosis or abnormalities associated with gluconeogenesis.
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.
Gray platelet syndrome (GPS), or platelet alpha-granule deficiency, is a rare congenital autosomal recessive bleeding disorder caused by a reduction or absence of alpha-granules in blood platelets, and the release of proteins normally contained in these granules into the marrow, causing myelofibrosis.
GPS is primarily inherited in an autosomal recessive manner, and the gene that is mutated in GPS has recently been mapped to chromosome 3p and identified as "NBEAL2". "NBEAL2" encodes a protein containing a BEACH domain that is predicted to be involved in vesicular trafficking. It is expressed in platelets and megakaryocytes and is required for the development of platelet alpha-granules. "NBEAL2" expression is also required for the development of thrombocytes in zebrafish.
GPS is characterized by "thrombocytopenia, and abnormally large agranular platelets in peripheral blood smears." The defect in GPS is the failure of megakaryocytes to package secretory proteins into alpha-granules. Patients with the GPS are affected by mild to moderate bleeding tendencies. Usually these are not major bleeds but there has been some life threatening cases. Also Women will tend to have heavy, irregular periods. Myelofibrosis is a condition that usually comes with the Gray Platelet syndrome.