Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most countries have standard newborn exams that include a hip joint exam screening for early detection of hip dysplasia.
Sometimes during an exam a "click" or more precisely "clunk" in the hip may be detected (although not all clicks indicate hip dysplasia). When a hip click (also known as "clicky hips" in the UK) is detected, the child's hips are tracked with additional screenings to determine if developmental dysplasia of the hip is caused.
Two maneuvers commonly employed for diagnosis in neonatal exams are the Ortolani maneuver and the Barlow maneuver.
In order to do the Ortolani maneuver it is recommended that the examiner put the newborn baby in a position in which the contralateral hip is held still while the thigh of the hip being tested is abducted and gently pulled anteriorly. If a "clunk" is heard (the sound of the femoral head moving over the acetabulum), the joint is normal, but absence of the "clunk" sound indicates that the acetabulum is not fully developed. The next method that can be used is called the Barlow maneuver. It is done by adducting the hip while pushing the thigh posteriorly. If the hip goes out of the socket it means it is dislocated, and the newborn has a congenital hip dislocation. The baby is laid on its back for examination by separation of its legs. If a clicking sound can be heard, it indicates that the baby may have a dislocated hip. It is highly recommended that these maneuvers be done when the baby is not fussing, because the baby may inhibit hip movement.
The condition can be confirmed by ultrasound and X-ray. Ultrasound imaging yields better results defining the anatomy until the cartilage is ossified. When the infant is around 3 months old a clear roentgenographic image can be achieved. Unfortunately the time the joint gives a good x-ray image is also the point at which nonsurgical treatment methods cease to give good results. In x-ray imaging dislocation may be indicated if the Shenton's line (an arc drawn from the medial aspect of the femoral neck through the superior margin of the obturator foramen) does not result in a smooth arc. However, in infants this line can be unreliable as it depends on the rotation of the hip when the image is taken ()
Asymmetrical gluteal folds and an apparent limb-length inequality can further indicate unilateral hip dysplasia. Most vexingly, many newborn hips show a certain ligamentous laxity, on the other hand severely malformed joints can appear stable. That is one reason why follow-up exams and developmental monitoring are important. Frequency and methods of routine screenings in children is still in debate however physical examination of newborns followed by appropriate use of hip ultrasound is widely accepted.
The Harris hip score (developed by William H. Harris MD, an orthopedist from Massachusetts) is one way to evaluate hip function following surgery. Other scoring methods are based on patients' evaluation like e.g. the Oxford hip score, HOOS and WOMAC score. Children's Hospital Oakland Hip Evaluation Scale (CHOHES) is a modification of the Harris hip score that is currently being evaluated.
Hip dysplasia can develop in older age. Adolescents and adults with hip dysplasia may present with hip pain and in some cases hip labral tears. X-rays are used to confirm a diagnosis of hip dysplasia. CT scans and MRI scans are occasionally used too.
In 1979 Dr. John F. Crowe et al. proposed a classification to define the degree of malformation and dislocation. Grouped from least severe Crowe I dysplasia to most severe Crowe IV. This classification is very useful for studying treatment results.
Rather than using the Wiberg angle because it makes it difficult to quantify the degree of dislocation they used 3 key elements to determine the degree of subluxation: A reference line at the lower rim of the "teardrop", junction between the femoral head and neck of the respective joint and the height of the pelvis (vertical measurement). They studied anteroposterior pelvic x-rays and drew horizontal lines through the lower rim of a feature called "teardrop". The distance between this line and the middle lines of the junction between femur head and neck gave them a measure of the degree of femur head subluxation. They further established that a "normal" diameter of the femur head measures 20% of the height of the pelvis. If the middle line of the neck-head junction was more than 10% of the pelvis height above the reference line they considered the joint to be more than 50% dislocated.
The following types resulted:
The diagnosis is usually initially made by a combination of physical exam and MRI of the shoulder, which can be done with or without the injection of intraarticular contrast. The presence of contrast allows for better evaluation of the glenoid labrum.
Arthroscopic repair of Bankart injuries have high success rates, with studies showing that nearly one-third of patients require re-intervention for continued shoulder instability following repair. Options for repair include an arthroscopic technique or a more invasive open Latarjet procedure, with the open technique tending to have a lower incidence of recurrent dislocation, but also a reduced range of motion following surgery.
The decisions involved in the repair of the Hill–Sachs lesion are complex. First, it is not repaired simply because of its existence, but because of its association with continuing symptoms and instability. This may be of greatest importance in the under-25-year-old and in the athlete involved in throwing activities. The Hill-Sachs role in continuing symptoms, in turn, may be related to its size and large lesions, particularly if involving greater than 20% of the articular surface, may impinge on the glenoid fossa (engage), promoting further episodes of instability or even dislocation. Also, it is a fracture, and associated bony lesions or fractures may coexist in the glenoid, such as the so-called bony Bankart lesion. Consequently, its operative treatment may include some form of bony augmentation, such as the Latarjet or similar procedure. Finally, there is no guarantee that associated non-bony lesions, such as a Bankart lesion, SLAP tear, or biceps tendon injury, may not be present and require intervention.
Ischiopatellar dysplasia is usually identified through radiographic evidence since its characteristic changes are most notable in radiographic tests that indicate delayed boneage or absent ossification. A full skeletal survey should be performed on any patient that has an absent or hypoplastic patellae since they could potentially have ischiopatellar dysplasia. Magnetic resonance imaging (MRI) is especially helpful in the diagnosis of ischiopatellar syndrome and is recommended when an individual affected by ischiopatellar dysplasia has a traumatic injury to the knee.
Imaging diagnosis conventionally begins with plain film radiography. Generally, AP radiographs of the shoulder with the arm in internal rotation offer the best yield while axillary views and AP radiographs with external rotation tend to obscure the defect. However, pain and tenderness in the injured joint make appropriate positioning difficult and in a recent study of plain film x-ray for Hill–Sachs lesions, the sensitivity was only about 20%. i.e. the finding was not visible on plain film x-ray about 80% of the time.
By contrast, studies have shown the value of ultrasonography in diagnosing Hill–Sachs lesions. In a population with recurrent dislocation using findings at surgery as the gold standard, a sensitivity of 96% was demonstrated. In a second study of patients with continuing shoulder instability after trauma, and using double contrast CT as a gold standard, a sensitivity of over 95% was demonstrated for ultrasound. It should be borne in mind that in both those studies, patients were having continuing problems after initial injury, and therefore the presence of a Hill–Sachs lesion was more likely. Nevertheless, ultrasonography, which is noninvasive and free from radiation, offers important advantages.
MRI has also been shown to be highly reliable for the diagnosis of Hill-Sachs (and Bankart) lesions. One study used challenging methodology. First of all, it applied to those patients with a single, or first time, dislocation. Such lesions were likely to be smaller and therefore more difficult to detect. Second, two radiologists, who were blinded to the surgical outcome, reviewed the MRI findings, while two orthopedic surgeons, who were blinded to the MRI findings, reviewed videotapes of the arthroscopic procedures. Coefficiency of agreement was then calculated for the MRI and arthroscopic findings and there was total agreement ( kappa = 1.0) for Hill-Sachs and Bankart lesions.
Depending on the severity of the deformities, the treatment may include the amputation of the foot or part of the leg, lengthening of the femur, extension prosthesis, or custom shoe lifts. Amputation usually requires the use of prosthesis. Another alternative is a rotationplasty procedure, also known as Van Ness surgery. In this situation the foot and ankle are surgically removed, then attached to the femur. This creates a functional "knee joint". This allows the patient to be fit with a below knee prosthesis vs a traditional above knee prosthesis.
In less severe cases, the use of an Ilizarov apparatus can be successful in conjunction with hip and knee surgeries (depending on the status of the femoral head/kneecap) to extend the femur length to normal ranges. This method of treatment can be problematic in that the Ilizarov might need to be applied both during early childhood (to keep the femur from being extremely short at the onset of growth) and after puberty (to match leg lengths after growth has ended). The clear benefit of this approach, however, is that no prosthetics are needed and at the conclusion of surgical procedures the patient will not be biologically or anatomically different from a person born without PFFD.
It is sometimes possible to correct the problem with surgery, though this has high failure rates for treatment of post-traumatic radioulnar synostosis.
Diagnosis is based on symptom and confirmed with X-rays. In children an MRI may be required.
Ultrasound remains as one of the only effective ways of prenatally diagnosing Larsen syndrome. Prenatal diagnosis is extremely important, as it can help families prepare for the arrival of an infant with several defects. Ultrasound can capture prenatal images of multiple joint dislocations, abnormal positioning of legs and knees, depressed nasal bridge, prominent forehead, and club feet. These symptoms are all associated with Larsen syndrome, so they can be used to confirm that a fetus has the disorder.
Anterior-posterior (AP) X-rays of the pelvis, AP and lateral views of the femur (knee included) are ordered for diagnosis. The size of the head of the femur is then compared across both sides of the pelvis. The affected femoral head will appear larger if the dislocation is anterior, and smaller if posterior. A CT scan may also be ordered to clarify the fracture pattern.
Most temporomandibular disorders (TMDs) are self-limiting and do not get worse. Simple treatment, involving self-care practices, rehabilitation aimed at eliminating muscle spasms, and restoring correct coordination, is all that is required. Nonsteroidal anti inflammatory analgesics (NSAIDs) should be used on a short-term, regular basis and not on an as needed basis. On the other hand, treatment of chronic TMD can be difficult and the condition is best managed by a team approach; the team consists of a primary care physician, a dentist, a physiotherapist, a psychologist, a pharmacologist, and in small number of cases, a surgeon. The different modalities include patient education and self-care practices, medication, physical therapy, splints, psychological counseling, relaxation techniques, biofeedback, hypnotherapy, acupuncture, and arthrocentesis.
As with most dislocated joints, a dislocated jaw can usually be successfully positioned into its normal position by a trained medical professional. Attempts to readjust the jaw without the assistance of a medical professional could result in worsening of the injury. The health care provider may be able to set it back into the correct position by manipulating the area back into its proper position. Numbing medications such as general anesthetics, muscle relaxants, or in some cases sedation, may be needed to relax the strong jaw muscle. In more severe cases, surgery may be needed to reposition the jaw, particularly if repeated jaw dislocations have occurred.
Monteggia fractures may be managed conservatively in children with closed reduction (resetting and casting), but due to high risk of displacement causing malunion, open reduction internal fixation is typically performed.
Osteosynthesis (open reduction and internal fixation) of the ulnar shaft is considered the standard of care in adults. It promotes stability of the radial head dislocation and allows very early mobilisation to prevent stiffness. The elbow joint is particularly susceptible to loss of motion.
Diagnosis is made on plain radiograph of the foot, although the extent of injury is often underestimated.
Treatment comprises early reduction of the dislocation, and frequently involves open reduction internal fixation to restore and stabilise the talonavicular joint. Open reduction and fusion of the calcaneocuboid joint is occasionally required.
Post-traumatic cases are most likely to develop following surgery for a forearm fracture, this is more common with high-energy injuries where the bones are broken into many pieces (comminuted). It can also develop following soft tissue injury to the forearm where there is haematoma formation.
The cause of PFFD is uncertain. Two hypotheses have been advanced. The theory of sclerotome subtraction posits injury to neural crest cells that are the precursors to sensory nerves at the level of L4 and L5. Histologic studies of a fetus with unilateral PFFD have prompted an alternative hypothesis that PFFD is caused by a defect in maturation of chondrocytes (cartilage cells) at the growth plate. In either hypothesis, the agent causing the injury is usually not known. Thalidomide is known to cause PFFD when the mother is exposed to it in the fifth or sixth week of pregnancy, and it is speculated that exposure to other toxins during pregnancy may also be a cause. Other etiologies that have been suggested, but not proven, include anoxia, ischemia, radiation, infection, hormones, and mechanical force. PFFD occurs sporadically, and does not appear to be hereditary.
First options for treatment are conservative, using hot or cold packs, rest and NSAID's at first. If no improvement is made, a splint or brace can be used to keep the deviated arm straight. When none of the conservative treatments work surgical intervention is designated.
In children, the results of early treatment are always good, typically normal or nearly so. If diagnosis is delayed, reconstructive surgery is needed and complications are much more common and results poorer. In adults, the healing is slower and results usually not as good.
Complications of ORIF surgery for Monteggia fractures can include non-union, malunion, nerve palsy and damage, muscle damage, arthritis, tendonitis, infection, stiffness and loss of range of motion, compartment syndrome, audible popping or snapping, deformity, and chronic pain associated with surgical hardware such as pins, screws, and plates. Several surgeries may be needed to correct this type of fracture as it is almost always a very complex fracture that requires a skilled orthopedic surgeon, usually a 'specialist', familiar with this type of injury.
Magnetic resonance imaging (MRI) can be helpful in assessing for a ligamentous injury to the medial side of the knee. Milewski et al. has found that grade I to III classification can be seen on MRI. With a high-quality image (1.5 tesla or 3 tesla magnet) and no previous knowledge of the patient’s history, musculoskeletal radiologists were able to accurately diagnose medial knee injury 87% of the time. MRI can also show associated bone bruises on the lateral side of the knee, which one study shows, happen in almost half of medial knee injuries.
Knee MRIs should be avoided for knee pain without mechanical symptoms or effusion, and upon non-successful results from a functional rehabilitation program.
Anterior-posterior (AP) radiographs are useful for reliably assessing normal anatomical landmarks. Bilateral valgus stress AP images can show a difference in medial joint space gapping. It has been reported that an isolated grade III sMCL tear will show an increase in medial compartment gapping of 1.7 mm at 0° of knee flexion and 3.2 mm at 20° of knee flexion, compared to the contralateral knee. Additionally, a complete medial ligamentous disruption (sMCL, dMCL, and POL) will show increased gapping by 6.5 mm at 0° and 9.8 mm at 20° during valgus stress testing. Pellegrini-Stieda syndrome can also be seen on AP radiographs. This finding is due to calcification of the sMCL (heterotopic ossification) caused by the chronic tear of the ligament.
Jaw dislocation is common for people who are in car, motorcycle or related accidents and also sports related activities. This injury does not pin point specific ages or genders because it could happen to anybody. People who dislocate their jaw do not usually seek emergency medical care. In most cases, jaw dislocations are acute and can be altered by minor manipulations. It was reported from one study that over a seven-year period at an emergency medical site, with 100,000 yearly visits, there were only 37 patients that were seen for a dislocated jaw.
Radioulnar synostosis is one of the more common failures of separation of parts of the upper limb. There are two general types: one is characterized by fusion of the radius and ulna at their proximal borders and the other is fused distal to the proximal radial epiphysis. Most cases are sporadic, congenital (due to a defect in longitudinal segmentation at the 7th week of development) and less often post-traumatic, bilateral in 60%, and more common in males. Familial cases in association with autosomal dominant transmission appear to be concentrated in certain geographic regions, such as Sicily.
The condition frequently is not noted until late childhood, as function may be normal, especially in unilateral cases. Increased wrist motion may compensate for the absent forearm motion. It has been suggested that individuals whose forearms are fixed in greater amounts of pronation (over 60 degrees) face more problems with function than those with around 20 degrees of fixation. Pain is generally not a problem, unless radial head dislocation should occur.
Most examples of radioulnar synostosis are isolated (non-syndromic). Syndromes that may be accompanied by radioulnar synostosis include X chromosome polyploidy (e.g., XXXY) and other chromosome disorders (e.g., 4p- syndrome, Williams syndrome), acrofacial dysostosis, Antley–Bixler syndrome, genitopatellar syndrome, Greig cephalopolysyndactyly syndrome, hereditary multiple osteochondromas (hereditary multiple exostoses), limb-body wall complex, and Nievergelt syndrome.
Craniosynostosis (from cranio, cranium; + syn, together; + ostosis relating to bone) is a condition in which one or more of the fibrous sutures in an infant skull prematurely fuses by turning into bone (ossification). Craniosynostosis has following kinds: scaphocephaly, trigonocephaly, plagiocephaly, anterior plagiocephaly, posterior plagiocephaly, brachycephaly, oxycephaly, pansynostosis.
After an anterior shoulder dislocation, the risk of a future dislocation is about 20%. This risk is greater in males than females.
With prompt treatment, particularly open reduction, and early mobilisation the outcome is generally good. High energy injuries and associated fractures worsen the outcome.