Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A test called the Bielschowsky Darkening Wedge Test can be used to reveal and diagnose the presence of dissociated vertical deviation, although any (or no) amount of dissociative occlusion may also prompt it to occur.
The patient is asked to look at a light. One eye is covered and a filter is placed in front of the other eye. The density or opacity of this filter is gradually increased, and the behaviour of the eye under the cover is observed not of the eye beneath the filter. Initially, if DVD is present, the covered eye will have elevated, but as the filter opacity is increased the eye under the cover will gradually move downwards. This "Bielschowsky phenomenon" is present in over 50% of persons with prominent DVD, all the more if the DVD is asymmetric and amblyopia is present as well.
The Bielschowsky phenomenon is also present in the horizontal plane in patients with prominent DHD (dissociated horizontal deviation).
In the United States, testing for "horizontal gaze nystagmus" is one of a battery of field sobriety tests used by police officers to determine whether a suspect is driving under the influence of alcohol. The test involves observation of the suspect's pupil as it follows a moving object, noting
1. lack of smooth pursuit,
2. distinct and sustained nystagmus at maximum deviation, and
3. the onset of nystagmus prior to 45 degrees.
The horizontal gaze nystagmus test has been highly criticized and major errors in the testing methodology and analysis found. However, the validity of the horizontal gaze nystagmus test for use as a field sobriety test for persons with a blood alcohol level between 0.04–0.08 is supported by peer reviewed studies and has been found to be a more accurate indication of blood alcohol content than other standard field sobriety tests.
DVD is often mistaken for over-action of the inferior oblique extra-ocular muscles. DVD can be revealed on ocular movement testing when one eye is occluded by the nose on lateral gaze. This eye will then elevate, simulating an inferior oblique over action. However, in a unilateral case, overaction of the superior rectus muscle in the unaffected dominant eye, can also be a causing factor as well as causing a V pattern exophoria.
According to a Cochrane review of 2012, controversies remain regarding type of surgery, non-surgical intervention and age of intervention.
The aims of treatment are as follows:
The elimination of any amblyopia
A cosmetically acceptable ocular alignment
long term stability of eye position
binocular cooperation.
Congenital nystagmus has traditionally been viewed as non-treatable, but medications have been discovered in recent years that show promise in some patients. In 1980, researchers discovered that a drug called baclofen could effectively stop periodic alternating nystagmus. Subsequently, gabapentin, an anticonvulsant, was found to cause improvement in about half the patients who received it to relieve symptoms of nystagmus. Other drugs found to be effective against nystagmus in some patients include memantine, levetiracetam, 3,4-diaminopyridine (available in the US to eligible patients with downbeat nystagmus at no cost under an expanded access program), 4-aminopyridine, and acetazolamide. Several therapeutic approaches, such as contact lenses, drugs, surgery, and low vision rehabilitation have also been proposed. For example, it has been proposed that mini-telescopic eyeglasses suppress nystagmus.
Surgical treatment of Congenital Nystagmus is aimed at improving the abnormal head posture, simulating artificial divergence or weakening the horizontal recti muscles. Clinical trials of a surgery to treat nystagmus (known as tenotomy) concluded in 2001. Tenotomy is now being performed regularly at numerous centres around the world. The surgery developed by Louis F. Dell'Osso Ph.D. aims to reduce the eye shaking (oscillations), which in turn tends to improve visual acuity.
Acupuncture has conflicting evidence as to having beneficial effects on the symptoms of nystagmus. Benefits have been seen in treatments where acupuncture points of the neck were used, specifically points on the sternocleidomastoid muscle. Benefits of acupuncture for treatment of nystagmus include a reduction in frequency and decreased slow phase velocities which led to an increase in foveation duration periods both during and after treatment. By the standards of evidence-based medicine, the quality of these studies can be considered poor (for example, Ishikawa has a study sample size of just six, is unblinded and without proper control), and given high quality studies showing that acupuncture has no effect beyond placebo, the results of these studies have to be considered clinically irrelevant until higher quality studies are produced.
Physical therapy or Occupational therapy is also used to treat nystagmus. Treatment consist of learning compensatory strategies to take over for the impaired system.
It is essential that a child with strabismus is presented to the ophthalmologist as early as possible for diagnosis and treatment in order to allow best possible monocular and binocular vision to develop. Initially, the patient will have a full eye examination to identify any associated pathology, and any glasses required to optimise acuity will be prescribed – although infantile esotropia is not typically associated with refractive error. Studies have found that approximately 15% of infantile esotropia patients have accommodative esotropia. For these patients, antiaccommodative therapy (with spectacles) is indicated before any surgery as antiaccommodative therapy fully corrects their esotropia in many cases and significantly decreases their deviation angle in others.
Amblyopia will be treated via occlusion treatment (using patching or atropine drops) of the non-squinting eye with the aim of achieving full alternation of fixation. Management thereafter will be surgical. As alternative to surgery, also botulinum toxin therapy has been used in children with infantile esotropia. Furthermore, as accompaniment to ophtalmologic treatment, craniosacral therapy may be performed in order to relieve tension ("see also:" Management of strabismus).
In general, strabismus can be approached and treated with a variety of procedures. Depending on the individual case, treatment options include:
- Correction of refractive errors by glasses
- Prism therapy (if tolerated, to manage diplopia)
- Patching (mainly to manage amblyopia in children and diplopia in adults)
- Botulinum toxin injection
- Surgical correction
Surgical correction of the hypertropia is desired to achieve binocularity, manage diplopia and/or correct the cosmetic defect. Steps to achieve the same depend on mechanism of the hypertropia and identification of the offending muscles causing the misalignment. Various surgical procedures have been described and should be offered after careful examination of eyes, including a detailed orthoptic examination focussing on the disturbances in ocular motility and visual status. Specialty fellowship trained pediatric ophthalmologists and strabismus surgeons are best equipped to deal with these complex procedures.
The prognosis for each patient with esotropia will depend upon the origin and classification of their condition. However, in general, management will take the following course:
1. Identify and treat any underlying systemic condition.
2. Prescribe any glasses required and allow the patient time to 'settle into' them.
3. Use occlusion to treat any amblyopia present and encourage alternation.
4. Where appropriate, orthoptic exercises can be used to attempt to restore binocularity.
5. Where appropriate, prismatic correction can be used, either temporarily or permanently, to relieve symptoms of double vision.
6. In specific cases, and primarily in adult patients, botulinum toxin can be used either as a permanent therapeutic approach, or as a temporary measure to prevent contracture of muscles prior to surgery
7. Where necessary, extra-ocular muscle surgery can be undertaken to improve cosmesis and, on occasion, restore binocularity.
Molecular (DNA) testing for PAX6 gene mutations (by sequencing of the entire coding region and deletion/duplication analysis) is available for isolated aniridia and the Gillespie syndrome. For the WAGR syndrome, high-resolution cytogenetic analysis and fluorescence in situ hybridization (FISH) can be utilized to identify deletions within chromosome band 11p13, where both the PAX6 and WT1 genes are located.
Genetic tests and related research are currently being performed at Centogene AG in Rostock, Germany; John and Marcia Carver Nonprofit Genetic Testing Laboratory in Iowa City, IA; GENESIS Center for Medical Genetics in Poznan, Poland; Miraca Genetics Laboratories in Houston, TX; Asper Biotech in Tartu, Estonia; CGC Genetics in Porto, Portugal; CEN4GEN Institute for Genomics and Molecular Diagnostics in Edmonton, Canada; and Reference Laboratory Genetics - Barcelona, Spain.
Refractive errors such as hyperopia and Anisometropia may be associated abnormalities found in patients with vertical strabismus.
The vertical miscoordination between the two eyes may lead to
- Strabismic amblyopia, (due to deprivation / suppression of the deviating eye)
- cosmetic defect (most noticed by parents of a young child and in photographs)
- Face turn, depending on presence of binocular vision in a particular gaze
- diplopia or double vision - more seen in adults (maturity / plasticity of neural pathways) and suppression mechanisms of the brain in sorting out the images from the two eyes.
- cyclotropia, a cyclotorsional deviation of the eyes (rotation around the visual axis), particularly when the root cause is an oblique muscle paresis causing the hypertropia.
Typically a coloboma appears oval or comet shaped with round end towards the centre. There may be a few vessels (retinal or choroidal) at the edges. The surface may have irregular depression.
ONH is diagnosed by ophthalmoscopic examination. Patients with ONH exhibit an optic nerve that appears smaller than normal and different in appearance from small optic nerves caused by other eye conditions such as optic (nerve) atrophy.
DM:DD ratio has proven to be a clinically useful measurement to help diagnose optic nerve hypoplasia. Where "DM" represents the distance from Disk to Macula, and "DD" represents Disc Diameter.
The mean disc diameter (DD) is (Vertical diameter of Disc+Horizontal diameter of Disc)divided by 2. The distance between the center of the disc and the macula is DM.
"Interpretation:" When the ratio of DM to DD is greater than 3, ONH is suspected, and when it is greater than 4, Optic Nerve Hypoplasia is definite.
"Congenital esotropia," or "infantile esotropia," is a specific sub-type of primary concomitant esotropia. It is a constant esotropia of large and consistent size with onset between birth and six months of age. It is not associated with hyperopia, so the exertion of accommodative effort will not significantly affect the angle of deviation. It is, however, associated with other ocular dysfunctions including oblique muscle over-actions, Dissociated Vertical Deviation (DVD,) Manifest Latent Nystagmus, and defective abduction, which develops as a consequence of the tendency of those with infantile esotropia to 'cross fixate.' Cross fixation involves the use of the right eye to look to the left and the left eye to look to the right; a visual pattern that will be 'natural' for the person with the large angle esotropia whose eye is already deviated towards the opposing side.
The origin of the condition is unknown, and its early onset means that the affected individual's potential for developing binocular vision is limited. The appropriate treatment approach remains a matter of some debate. Some ophthalmologists favour an early surgical approach as offering the best prospect of binocularity whilst others remain unconvinced that the prospects of achieving this result are good enough to justify the increased complexity and risk associated with operating on those under the age of one year.
Colobomas of the iris may be treated in a number of ways. A simple cosmetic solution is a specialized cosmetic contact lens with an artificial pupil aperture. Surgical repair of the iris defect is also possible. Surgeons can close the defect by stitching in some cases. More recently artificial iris prosthetic devices such as the Human Optics artificial iris have been used successfully by specialist surgeons. This device cannot be used if the natural lens is in place and is not suitable for children. Suture repair is a better option where the lens is still present.
Vision can be improved with glasses, contact lenses or even laser eye surgery but may be limited if the retina is affected or there is amblyopia.
One form of LCA, patients with LCA2 bearing a mutation in the RPE65 gene, has been successfully treated in clinical trials using gene therapy. The results of three early clinical trials were published in 2008 demonstrating the safety and efficacy of using adeno-associated virus to deliver gene therapy to restore vision in LCA patients. In all three clinical trials, patients recovered functional vision without apparent side-effects. These studies, which used adeno-associated virus, have spawned a number of new studies investigating gene therapy for human retinal disease.
The results of a phase 1 trial conducted by the University of Pennsylvania and Children’s Hospital of Philadelphia and published in 2009 showed sustained improvement in 12 subjects (ages 8 to 44) with RPE65-associated LCA after treatment with AAV2-hRPE65v2, a gene replacement therapy. Early intervention was associated with better results. In that study, patients were excluded based on the presence of particular antibodies to the vector AAV2 and treatment was only administered to one eye as a precaution. A 2010 study testing the effect of administration of AAV2-hRPE65v2 in both eyes in animals with antibodies present suggested that immune responses may not complicate use of the treatment in both eyes.
Eye Surgeon Dr. Al Maguire and gene therapy expert Dr. Jean Bennett developed the technique used by the Children's Hospital.
Dr. Sue Semple-Rowland at the University of Florida has recently restored sight in an avian model using gene therapy.
The eye findings of Parinaud's Syndrome generally improve slowly over months, especially with resolution of the causative factor; continued resolution after the first 3–6 months of onset is uncommon. However, rapid resolution after normalization of intracranial pressure following placement of a ventriculoperitoneal shunt has been reported.
Treatment is primarily directed towards etiology of the dorsal midbrain syndrome. A thorough workup, including neuroimaging is essential to rule out anatomic lesions or other causes of this syndrome. Visually significant upgaze palsy can be relieved with bilateral inferior rectus recessions. Retraction nystagmus and convergence movement are usually improved with this procedure as well.
Congenital fourth cranial nerve palsy can be treated with strabismus surgery, where muscle attachment sites on the globe are modified to realign the eyes. Some eye doctors prefer conservative or no management of congenital fourth nerve palsy.
Other eye doctors recommend surgery early in a patient's life to prevent the compensatory torticollis and facial asymmetry that develop with age.
Prism lenses set to make minor optical changes in the vertical alignment may be prescribed instead of or after surgery to fine-tune the correction. Prism lenses do not address torsional misalignment and this may limit their use in certain cases. An additional consideration of prism lenses is that they must be worn at all times. Prism lenses reduce vertical fusional demands by allowing the eyes to rest in their vertically misaligned state. When they are removed the patient may experience vertical diplopia they find hard to resolve due to the rested state of their eyes.
Cases of congenital fourth nerve palsy vary in magnitude and way they affect the motion of the superior oblique muscle. Therefore different surgeries are available dependent upon the type of misalignment. Sometimes surgery on more than one eye muscle is required. In some simpler, unilateral cases a single surgery may suffice. In these cases the main problem is that the inferior oblique muscle of the same eye acts unopposed by the weakened superior oblique muscle, pulling the eye up. An example of a safe and effective procedure is a disinsertion of the inferior oblique muscle to allow it to reattach itself further down the globe of the eye. This acts to 'weaken' its action and allow the eye to move back into a more neutral alignment.
In all cases of congenital fourth nerve palsy, it is important to see an experienced strabismologist about management/treatment options. A strabismologist is an ophthalmologist (eye doctor) specialising in eye movement disorders.
The visual prognosis in optic nerve hypoplasia is quite variable. Occasionally, optic nerve hypoplasia may be compatible with near-normal vision; in other cases, one or both eyes may be functionally, or legally blind. Although most patients with only optic nerve involvement lead normally productive lives, those with accompanying endocrine dysfunction or other midline cerebral abnormalities are more at risk for on-going intellectual and other disabilities.
Amaurotic nystagmus is defined as the nystagmus associated with blindness or the central vision defects. It is characterized by the pendular or jerky movements of the eyes in the patients who have visual impairement for a long period of time.
The prognosis of a lesion in the visual neural pathways that causes a conjugate gaze palsy varies greatly. Depending on the nature of the lesion, recovery may happen rapidly or recovery may never progress. For example, optic neuritis, which is caused by inflammation, may heal in just weeks, while patients with an ischemic optic neuropathy may never recover.
There is no treatment of conjugate gaze palsy itself, so the disease or condition causing the gaze palsy must be treated, likely by surgery. As stated in the causes section, the gaze palsy may be due to a lesion caused by stroke or a condition. Some of the conditions such as Progressive supra nuclear palsy are not curable, and treatment only includes therapy to regain some tasks, not including gaze control. Other conditions such as Niemann-Pick disease type C have limited drug therapeutic options. Stroke victims with conjugate gaze palsies may be treated with intravenous therapy if the patent presents early enough, or with a surgical procedure for other cases.
If an optokinetic drum is available, rotate the drum in front of the patient. Ask the patient to look at the drum as you rotate it slowly. If an optokinetic drum is not available, move a strip of paper with alternating 2-inch black and white strips across the patient's visual field. Pass it in front of the patient's eye at reading distance while instructing the patient to look at it as it rapidly moves by. With normal vision, a nystagmus develops in both adults and infants. The nystagmus consists of initial slow phases in the direction of the stimulus (smooth pursuits), followed by fast, corrective phases (saccade). Presence of nystagmus indicates an intact visual pathway.
Another effective method is to hold a mirror in front of the patient and slowly rotate the mirror to either side of the patient. The patient with an intact visual pathway will maintain eye contact with herself or himself. This compelling optokinetic stimulus forces reflex slow eye movements.
OKN can be used as a crude assessment of the visual system, particularly in infants. When factitious blindness or malingering is suspected, check for optokinetic nystagmus to determine whether there is an intact visual pathway.
Pendular nystagmus is a sinusoidal oscillation, which refers to the waveform of involuntary eye movements that may occur in any direction. It is characterized by the multidimensional slow eye movements of the eyes (1 Hz frequency) with an equal velocity in each direction that resembles the trajectory of a pendulum. These pattern of these movements may differ between the two eyes. Depending upon the pattern of movements, pendular nystagmus has been divided into different subtypes such as congenital nystagmus, acquired pendular nystagmus, and amaurotic nystagmus.
It has been suggested that the disease follows a x-linked pattern of inheritance though studies done on this particular disease are few.