Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Treatment depends on the anatomy of the malformation as determined by angiography or Magnetic Resonance Imaging (MRI).
Testing for a malformed vein of Galen is indicated when a patient has heart failure which has no obvious cause. Diagnosis is generally achieved by signs such as cranial bruits and symptoms such as expanded facial veins. The vein of Galen can be visualized using ultrasound or Doppler. A malformed Great Cerebral Vein will be noticeably enlarged. Ultrasound is a particularly useful tool for vein of Galen malformations because so many cases occur in infancy and ultrasound can make diagnoses prenatally. Many cases are diagnosed only during autopsy as congestive heart failure occurs very early.
Diagnosis is generally made by magnetic resonance imaging (MRI), particularly using a specific imaging technique known as a gradient-echo sequence MRI, which can unmask small or punctate lesions that may otherwise remain undetected. These lesions are also more conspicuous on FLAIR imaging compared to standard T2 weighing. FLAIR imaging is different from gradient sequences. Rather, it is similar to T2 weighing but suppresses free-flowing fluid signal. Sometimes quiescent CCMs can be revealed as incidental findings during MRI exams ordered for other reasons. Many cavernous hemangiomas are detected "accidentally" during MRIs searching for other pathologies. These "incidentalomas" are generally asymptomatic. In the case of hemorrhage, however, a CT scan is more efficient at showing new blood than an MRI, and when brain hemorrhage is suspected, a CT scan may be ordered first, followed by an MRI to confirm the type of lesion that has bled.
Sometimes the lesion appearance imaged by MRI remains inconclusive. Consequently neurosurgeons will order a cerebral angiogram or magnetic resonance angiogram (MRA). Since CCMs are low flow lesions (they are hooked into the venous side of the circulatory system), they will be angiographically occult (invisible). If a lesion is discernible via angiogram in the same location as in the MRI, then an arteriovenous malformation (AVM) becomes the primary concern.
The surgical treatment involves the resection of the extracranial venous package and ligation of the emissary communicating vein. In some cases of SP, surgical excision is performed for cosmetic reasons. The endovascular technique has been described by transvenous approach combined with direct puncture and the recently endovascular embolization with Onyx.
Prenatal Diagnosis:
- Aymé, "et al." (1989) reported prenatal diagnosis of Fryns syndrome by sonography between 24 and 27 weeks.
- Manouvrier-Hanu et al. (1996) described the prenatal diagnosis of Fryns syndrome by ultrasonographic detection of diaphragmatic hernia and cystic hygroma. The diagnosis was confirmed after termination of the pregnancy. The fetus also had 2 erupted incisors; natal teeth had not been mentioned in other cases of Fryns syndrome.
Differential Diagnosis:
- McPherson et al. (1993) noted the phenotypic overlap between Fryns syndrome and the Pallister–Killian syndrome (601803), which is a dysmorphic syndrome with tissue-specific mosaicism of tetrasomy 12p.
- Veldman et al. (2002) discussed the differentiation between Fryns syndrome and Pallister–Killian syndrome, noting that differentiation is important to genetic counseling because Fryns syndrome is an autosomal recessive disorder and Pallister–Killian syndrome is usually a sporadic chromosomal aberration. However, discrimination may be difficult due to the phenotypic similarity. In fact, in some infants with 'coarse face,' acral hypoplasia, and internal anomalies, the initial diagnosis of Fryns syndrome had to be changed because mosaicism of isochromosome 12p was detected in fibroblast cultures or kidney tissue. Although congenital diaphragmatic hernia is a common finding in both syndromes, bilateral congenital diaphragmatic hernia had been reported only in patients with Fryns syndrome until the report of the patient with Pallister–Killian syndrome by Veldman et al. (2002).
- Slavotinek (2004) reviewed the phenotypes of 52 reported cases of Fryns syndrome and reevaluated the diagnostic guidelines. She concluded that congenital diaphragmatic hernia and distal limb hypoplasia are strongly suggestive of Fryns syndrome, with other diagnostically relevant findings including pulmonary hypoplasia, craniofacial dysmorphism, polyhydramnios, and orofacial clefting. Slavotinek (2004) stated that other distinctive anomalies not mentioned in previous guidelines include ventricular dilatation or hydrocephalus, agenesis of the corpus callosum, abnormalities of the aorta, dilatation of the ureters, proximal thumbs, and broad clavicles.
Treatment is with neonatal surgical repair, with the objective of restoring a normal pattern of blood flow. The surgery is open heart, and the patient will be placed on cardiopulmonary bypass to allow the surgeon to work on a still heart. The heart is opened and the ventricular septal defect is closed with a patch. The pulmonary arteries are then detached from the common artery (truncus arteriosus) and connected to the right ventricle using a tube (a conduit or tunnel). The common artery, now separated from the pulmonary circulation, functions as the aorta with the truncal valve operating as the aortic valve. Most babies survive this surgical repair, but may require further surgery as they grow up. For example, the conduit does not grow with the child and may need to be replaced as the child grows. Furthermore, the truncal valve is often abnormal and may require future surgery to improve its function.
There have been cases where the condition has been diagnosed at birth and surgical intervention is an option. A number of these cases have survived well into adulthood.
"Prenatal diagnosis (fetal ultrasound):"
Today the diagnosis of double aortic arch can be obtained in-utero in experienced centers. Scheduled repair soon after birth in symptomatic patients can relieve tracheal compression early and therefore potentially prevent the development of severe tracheomalacia.
"Chest X-ray:"
Plain chest x-rays of patients with double aortic arch may appear normal (often) or show a dominant right aortic arch or two aortic arches . There might be evidence of tracheal deviation and/or compression. Sometimes patients present with radiologic findings of pneumonia.
"Barium swallow (esophagraphy):"
Historically the esophagram used to be the gold standard for diagnosis of double aortic arch. In patients with double aortic arch the esophagus shows left- and right-sided indentations from the vascular compression. Due to the blood-pressure related movement of the aorta and the two arches, moving images of the barium-filled esophagus can demonstrate the typical pulsatile nature of the obstruction. The indentation from a dominant right arch is usually deeper and higher compared to the dent from the left arch.
"Bronchoscopy:"
Although bronchoscopy is not routinely done in patients with suspected or confirmed double aortic arch, it can visualize sites and severity of pulsatile tracheal compression.
"Echocardiography:"
In babies under the age of 12 months, echocardiography is considered to be sensitive and specific in making the diagnosis of double aortic arch when both arches are open. Non-perfused elements of other types of vascular rings (e.g. left arch with atretic (closed) end) or the ligamentum arteriosum might be difficult to visualize by echocardiography.
"Computed tomography (CT):"
Computed tomography after application of contrast media is usually diagnostically accurate. It shows the relationship of the arches to the trachea and bronchi.
"Magnetic resonance imaging (MRI):"
Magnetic resonance imaging provides excellent images of the trachea and surrounding vascular structures and has the advantage of not using radiation for imaging compared to Computed tomography.
"Cardiac catherization/aortography:"
Today patients with double aortic arch usually only undergo cardiac catherization to evaluate the hemodynamics and anatomy of associated congenital cardiac defects. Through a catheter in the ascending aorta contrast media is injected and the resulting aortography may be used to delineate the anatomy of the double aortic arch including sites of narrowing in the left aortic arch. Aortography can also be used to visualize the origin of all head and arm vessels originating from the two arches.
a combination of various vascular malformations. They are 'complex' because they involve a combination of two different types of vessels.
- CVM: capillary venous malformation
- CLM: capillary lymphatic malformation
- LVM: lymphatic venous malformation
- CLVM: capillary lymphatic venous malformation. CLVM is associated with Klippel-Trenaunay syndrome
- AVM-LM: Arteriovenous malformation- lymphatic malformation
- CM-AVM: capillary malformation- arteriovenous malformation
It can be diagnosed with CT scan, angiography, transesophageal echocardiography, or cardiac MRI. Unfortunately, less invasive and expensive testing, such as transthoracic echocardiography and CT scanning are generally less sensitive.
All fast-flow malformations are malformations involving arteries. They constitute about 14% of all vascular malformations.
- Arterial malformation
- Arteriovenous fistula (AVF) : a lesion with a direct communication via fistulae between an artery and a vein.
- Arteriovenous malformation : a lesion with a direct connection between an artery and a vein, without an intervening capillary bed, but with an interposed nidus of dysplastic vascular channels in between.
Surgical correction is indicated in all double aortic arch patients with obstructive symptoms (stridor, wheezing, pulmonary infections, poor feeding with choking). If symptoms are absent a conservative approach (watchful waiting) can be reasonable. Children with very mild symptoms may outgrow their symptoms but need regular follow-up.
The most well-known classification was the fourfold system developed by Collett and Edwards in 1949. Collett/Edwards Types I, II, and III are distinguished by the branching pattern of the pulmonary arteries:
- Type I: truncus -> one pulmonary artery -> two lateral pulmonary arteries
- Type II: truncus -> two posterior/posterolateral pulmonary arteries
- Type III: truncus -> two lateral pulmonary arteries
The "Type IV" proposed in 1949 is no longer considered a form of PTA by most modern sources.
Another well-known classification was defined by Van Praaghs in 1965.
A "Partial anomalous pulmonary venous connection" (or "Partial anomalous pulmonary venous drainage" or "Partial anomalous pulmonary venous return") is a congenital defect where the left atrium is the point of return for the blood from some (but not all) of the pulmonary veins.
It is less severe than total anomalous pulmonary venous connection which is a life-threatening anomaly requiring emergent surgical correction, usually diagnosed in the first few days of life. Partial anomalous venous connection may be diagnosed at any time from birth to old age. The severity of symptoms, and thus the likelihood of diagnosis, varies significantly depending on the amount of blood flow through the anomalous connections. In less severe cases, with smaller amounts of blood flow, diagnosis may be delayed until adulthood, when it can be confused with other causes of pulmonary hypertension. There is also evidence that a significant number of mild cases are never diagnosed, or diagnosed incidentally. It is associated with other vascular anomalies, and some genetic syndromes such as Turner syndrome.
In France, Aymé, "et al." (1989) estimated the prevalence of Fryns syndrome to be 0.7 per 10,000 births based on the diagnosis of 6 cases in a series of 112,276 consecutive births (live births and perinatal deaths).
Patients who are diagnosed with AAOCA at or before age 30 years are eligible for this study. They should have otherwise normal heart or only minor defects such as Atrial septal defect, Ventricular septal defect, Patent ductus arteriosus, bicuspid aortic valve, mild pulmonary stenosis etc.
Patients who have other major heart problems that require operations are currently not included in this Cohort study. Any other problems with coronary arteries are also not included.
PDA is usually diagnosed using noninvasive techniques. Echocardiography (in which sound waves are used to capture the motion of the heart) and associated Doppler studies are the primary methods of detecting PDA. Electrocardiography (ECG), in which electrodes are used to record the electrical activity of the heart, is not particularly helpful as no specific rhythms or ECG patterns can be used to detect PDA.
A chest X-ray may be taken, which reveals overall heart size (as a reflection of the combined mass of the cardiac chambers) and the appearance of blood flow to the lungs. A small PDA most often accompanies a normal-sized heart and normal blood flow to the lungs. A large PDA generally accompanies an enlarged cardiac silhouette and increased blood flow to the lungs.
As the causes of local gigantism are varied, treatment depends on the particular condition. Treatment may range from antibiotics and other medical therapy, to surgery in order to correct the anatomical anomaly.
Sinus pericranii (SP) is a rare disorder characterized by a congenital (or occasionally, acquired) epicranial venous malformation of the scalp. Sinus pericranii is an abnormal communication between the intracranial and extracranial venous drainage pathways. Treatment of this condition has mainly been recommended for aesthetic reasons and prevention of hemorrhage.
Some evidence suggests that indomethacin administration on the first day of life to all preterm infants reduces the risk of developing a PDA and the complications associated with PDA. Indomethacin treatment in premature infants also may reduce the need for surgical intervention.
The AAOCA is a rare birth defect in the heart that occurs when a coronary artery arises from the wrong location on the main blood vessel, the aorta.
Children and young adults with these defects can die suddenly, especially during or just after exercise. In fact, AAOCA is the second leading cause of sudden cardiac death in children and adolescents in the United States behind hypertrophic cardiomyopathy. The prevalence is estimated at 0.1% to 0.3% of the general population. Neither the true risk of sudden death nor the best way to treat these patients is known with certainty. Because of the risk of sudden death, doctors face the pressure to “do something” but in the absence of long-term follow-up data, the risks and benefits of different management options are unconfirmed. This study will create a pool of information that may guide future choice of treatment options for these children and young adults.
This study will be ongoing for 15 years. It is expected that approximately 1000 patients will be enrolled.
This funding to start the registry was provided by The Children's Heart Foundation, The Cardiac Center at The Children's Hospital of Philadelphia and from CHSS member institutions.
The incidence in the general population is roughly 0.5%, and clinical symptoms typically appear between 20 to 30 years of age. Once thought to be strictly congenital, these vascular lesions have been found to occur "de novo". It may appear either sporadically or exhibit autosomal dominant inheritance.
DVA can be diagnosed through the Cerebral venous sinus thrombosis with collateral drainage. DVA can also be found diagnosed with Sturge–Weber syndrome and can be found through leptomeningeal angiomatosis. Demyelinating disease has also been found to enlarge Medulla veins.
Symptoms of congenital PSS usually appear by six months of age and include failure to gain weight, vomiting, and signs of hepatic encephalopathy (a condition where toxins normally removed by the liver accumulate in the blood and impair the function of brain cells) such as seizures, depression, tremors, drooling, and head pressing. Urate bladder stones may form because of increased amounts of uric acid in circulation and excreted by the kidneys. Initial diagnosis of PSS is through laboratory bloodwork showing either elevated serum bile acids after eating or elevation of fasting blood ammonia levels, which has been shown to have a higher sensitivity and specificity than the bile acids test.
Various diagnostic imaging techniques are used to demonstrate PSS. Ultrasonography is a rapid, convenient, non-invasive, and accurate method for diagnosis of PSS. Ultrasonographic diagnosis of congenital PSS depends on finding an anomalous vessel either in the liver or just caudal to the liver in the dorsal abdomen, usually draining into the caudal vena cava. Ultrasonography can also be used to estimate hepatic volume and vascularity, and to identify related lesions affecting other abdominal structures, such as urinary calculi. Computed tomography (CT) may be considered when ultrasound expertise is lacking or ultrasonography is considered sub-optimal (e.g. because of the conformation of the patient). Control of respiration and careful timing of CT acquisition after contrast injection is necessary for optimal depiction of PSS. Rectal portal scintigraphy using technetium pertechnetate, a technique of imaging involving detection of gamma rays emitted by radionuclides absorbed through the rectum and into the bloodstream, demonstrates the blood vessel bypassing the liver. In certain institutions, scintigraphy is the preferred diagnostic technique, but this leaves the patient radioactive for 24h, which may be inconvenient depending on nursing needs. Portal venography is the definitive method for demonstrating PSS, but is invasive, hence it is best reserved for animals with a known shunt or those considered highly likely to have a shunt that was not detectable by ultrasonography.
DORV affects between 1% and 3% of people born with congenital heart defects.
Chromosomal abnormalities were reported in about 40% of reported cases in the medical literature.
Adult presentation in diastematomyelia is unusual. With modern imaging techniques, various types of spinal dysraphism are being diagnosed in adults with increasing frequency. The commonest location of the lesion is at first to third lumbar vertebrae. Lumbosacral adult diastematomyelia is even rarer. Bony malformations and dysplasias are generally recognized on plain x-rays. MRI scanning is often the first choice of screening and diagnosis. MRI generally give adequate analysis of the spinal cord deformities although it has some limitations in giving detailed bone anatomy. Combined myelographic and post-myelographic CT scan is the most effective diagnostic tool in demonstrating the detailed bone, intradural and extradural pathological anatomy of the affected and adjacent spinal canal levels and of the bony spur.
Prenatal ultrasound diagnosis of this anomaly is usually possible in the early to mid third-trimester. An extra posterior echogenic focus between the fetal spinal laminae is seen with splaying of the posterior elements, thus allowing for early surgical intervention and have a favorable prognosis. Prenate ultrasound could also detect whether the diastematomyelia is isolated, with the skin intact or association with any serious neural tube defects. Progressive neurological lesions may result from the "tethering cord syndrome" (fixation of the spinal cord) by the diastematomyelia phenomenon or any of the associated disorders such as myelodysplasia, dysraphia of the spinal cord.