Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diagnosis of inherited hypoprothrombinemia, relies heavily on a patient's medical history, family history of bleeding issues, and lab exams performed by a hematologist. A physical examination by a general physician should also be performed in order to determine whether the condition is congenital or acquired, as well as ruling out other possible conditions with similar symptoms. For acquired forms, information must be taken regarding current diseases and medications taken by the patient, if applicable.
Lab tests that are performed to determine diagnosis:
1. Factor Assays: To observe the performance of specific factors (II) to identify missing/poorly performing factors. These lab tests are typically performed first in order to determine the status of the factor.
2. Prothrombin Blood Test: Determines if patient has deficient or low levels of Factor II.
3. Vitamin K1 Test: Performed to evaluate bleeding of unknown causes, nosebleeds, and identified bruising. To accomplish this, a band is wrapped around the patient's arm, 4 inches above the superficial vein site in the elbow pit. The vein is penetrated with the needle and amount of blood required for testing is obtained. Decreased vitamin K levels are suggestive of hypoprothrombinemia. However, this exam is rarely used as a Prothrombin Blood Test is performed beforehand.
A 28 month old girl, showed symptoms from 8 months of age and consisted of complaints of painful bruises over lower limbs, and disturbed, painful sleep at night. Family history revealed older brother also suffered similar problems and died at age of two years possibly due to bleeding - no diagnosis was confirmed. Complete blood count and blood smear was determined as normal. No abnormality in fibrinogen, liver function test, and bleeding time. However, prothrombin levels were less than 1% so patient was transfused with fresh frozen plasma (FFP). Post transfusion methods, patient is now 28 months old and living healthy life. The only treatment that is needed to date is for the painful bruises, which the patient is given FFP every 5-6 weeks.
Twelve day old boy admitted for symptoms consisting of blood stained vomiting and dark colored stool. Upon admission into hospital, patient received vitamin K and FFP transfusion. No family history of similarity in symptoms that were presented. At 40 days old, patient showed symptoms of tonic posturing and constant vomiting. CT scan revealed subdural hemorrhage, and other testing showed low hb levels of 7%, platelets at 3.5 lakhs/cu mm. PT examination was 51 seconds and aPTT at 87 seconds. Prothrombin activity levels were less than 1%. All other exams revealed no abnormalities. Treatment methods included vitamin K and FFP, as well as ventilator support and packed red blood cell transfusion (PRBC). At half a year of age, condition consisted of possible poor neurological outcome secondary to CNS bleeding. Treatment of very frequent transfusion was needed for patient.
Recent study illustrated a patient with 2 weeks of continuous bleeding, with presence of epistaxis, melena, hematuria, and pruritic rash with no previous bleeding history. Vitals were all within normal range, however, presence of ecchymoses was visible in chest, back and upper areas. Lab exams revealed prolonged prothrombin time (PT) of 34.4 and acquired partial thromboplastin time (aPTT) of 81.7, as well as elevated liver function tests. Discontinuation of atorvastatin, caused liver enzymes to go back to normal. Treatment of vitamin K, antibiotics, and fresh frozen plasma (FFP) did not have an impact on coagulopathy. Mixing of PT and aPTT was performed in order to further evaluate coagulopathy and revealed no correction. Factor activity assays were performed to determine the presence of a specific one. Testing revealed that factor II activity could not be quantified. Further studies showed that acquired factor II inhibitor was present without the lupus anticoagulant, with no clear cause associated with the condition. Aimed to control bleeding and getting rid of the inhibitor through directly treating the underlying disease or through immunosuppressive therapy. Corticosteroids and intravenous immunoglobulin improved the PT and aPTT. Did not improve bleeding conditions until treatment of transfusion with activated PCC. Treatment of inhibitor required Rituximab, which was shown to increase factor II levels to 264%. Study shows that when a patient with no history of coagulopathy presents themselves with hemorrhagic diathesis, direct testing of a factor II inhibitor should be performed initially.
The diagnosis for deficiency of protein S can be done via reviewing family history of condition and genetic testing, as well as the following:
- Protein S antigen test
- Coagulation test (prothrombin time test)
- Thrombotic disease investigation
- Factor V Leiden test
Blood tests are neede to differentiate FVII deficiency from other bleeding disorders. Typical is a discordance between the prolonged prothrombin time (PT) and normal levels for the activated partial thromboplastin time (APTT). FVII levels are <10IU/dl in homozygous individuals, and between 20-60 in heterozygous carriers. The FCVII: C assay supports the diagnosis.
The FVII gene (F7) is found on chromosome 13q34. Heterogeneous mutations have been described in FVII deficient patients.
In terms of treatment for protein S deficiency the following are consistent with the "management" (and administration of) individuals with this condition ( it should be noted that the prognosis for "inherited" homozygotes is usually in line with a higher incidence of thrombosis for the affected individual):
There are several treatments available for factor VII deficiency; they all replace deficient FVII.
1. Recombinant FVIIa concentrate (rFVIIa) is a recombinant treatment that is highly effective and has no risk of fluid overload or viral disease. It may be the optimal therapy.
2. Plasma derived Factor VII concentrate (pdFVII) : This treatment is suitable for surgery but can lead to thrombosis. It is virus attenuated.
3. Prothrombin complex concentrate (PCC) containing factor VII: this treatment is suitable for surgery, but has a risk of thrombosis. It is virus attenuated.
4. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
There are divergent views as to whether everyone with an unprovoked episode of thrombosis should be investigated for thrombophilia. Even those with a form of thrombophilia may not necessarily be at risk of further thrombosis, while recurrent thrombosis is more likely in those who have had previous thrombosis even in those who have no detectable thrombophilic abnormalities. Recurrent thromboembolism, or thrombosis in unusual sites (e.g. the hepatic vein in Budd-Chiari syndrome), is a generally accepted indication for screening. It is more likely to be cost-effective in people with a strong personal or family history of thrombosis. In contrast, the combination of thrombophilia with other risk factors may provide an indication for preventative treatment, which is why thrombophilia testing may be performed even in those who would not meet the strict criteria for these tests. Searching for a coagulation abnormality is not normally undertaken in patients in whom thrombosis has an obvious trigger. For example, if the thrombosis is due to immobilization after recent orthopedic surgery, it is regarded as "provoked" by the immobilization and the surgery and it is less likely that investigations will yield clinically important results.
When venous thromboembolism occurs when a patient is experiencing transient major risk factors such as prolonged immobility, surgery, or trauma, testing for thrombophilia is not appropriate because the outcome of the test would not change a patient's indicated treatment. In 2013, the American Society of Hematology, as part of recommendations in the Choosing Wisely campaign, cautioned against overuse of thrombophilia screening; false positive results of testing would lead to people inappropriately being labeled as having thrombophilia, and being treated with anticoagulants without clinical need
In the United Kingdom, professional guidelines give specific indications for thrombophilia testing. It is recommended that testing be done only after appropriate counseling, and hence the investigations are usually not performed at the time when thrombosis is diagnosed but at a later time. In particular situations, such as retinal vein thrombosis, testing is discouraged altogether because thrombophilia is not regarded as a major risk factor. In other rare conditions generally linked with hypercoagulability, such as cerebral venous thrombosis and portal vein thrombosis, there is insufficient data to state for certain whether thrombophilia screening is helpful, and decisions on thrombophilia screening in these conditions are therefore not regarded as evidence-based. If cost-effectiveness (quality-adjusted life years in return for expenditure) is taken as a guide, it is generally unclear whether thrombophilia investigations justify the often high cost, unless the testing is restricted to selected situations.
Recurrent miscarriage is an indication for thrombophilia screening, particularly antiphospholipid antibodies (anti-cardiolipin IgG and IgM, as well as lupus anticoagulant), factor V Leiden and prothrombin mutation, activated protein C resistance and a general assessment of coagulation through an investigation known as thromboelastography.
Women who are planning to use oral contraceptives do not benefit from routine screening for thrombophilias, as the absolute risk of thrombotic events is low. If either the woman or a first-degree relative has suffered from thrombosis, the risk of developing thrombosis is increased. Screening this selected group may be beneficial, but even when negative may still indicate residual risk. Professional guidelines therefore suggest that alternative forms of contraception be used rather than relying on screening.
Thrombophilia screening in people with arterial thrombosis is generally regarded unrewarding and is generally discouraged, except possibly for unusually young patients (especially when precipitated by smoking or use of estrogen-containing hormonal contraceptives) and those in whom revascularization, such as coronary arterial bypass, fails because of rapid occlusion of the graft.
There are two main types of protein C assays, activity and antigen (immunoassays). Commercially available activity assays are based on chromogenic assays that use activation by snake venom in an activating reagent, or clotting and enzyme-linked immunosorbant assays. Repeated testing for protein C functional activity allows differentiation between transient and congenital deficiency of protein C.
Initially, a protein C activity (functional) assay can be performed, and if the result is low, a protein C antigen assay can be considered to determine the deficiency subtype (Type I or Type II). In type I deficiencies, normally functioning protein C molecules are made in reduced quantity. In type II deficiencies normal amounts of dysfunctional protein C are synthesized.
Antigen assays are immunoassays designed to measure the quantity of protein C regardless of its function. Type I deficiencies are therefore characterized by a decrease in both activity and antigen protein C assays whereas type II deficiencies exhibit normal protein C antigen levels with decreased activity levels.
The human protein C gene (PROC) comprises 9 exons, and protein C deficiency has been linked to over 160 mutations to date. Therefore, DNA testing for protein C deficiency is generally not available outside of specialized research laboratories.
Manifestation of purpura fulminans as it is usually associated with reduced protein C plasma concentrations of <5 mg IU/dL. The normal concentration of plasma protein C is 70 nM (4 µg/mL) with a half live of approximately 8 hours. Healthy term neonates, however, have lower (and more variable) physiological levels of protein C (ranging between 15-55 IU/dL) than older children or adults, and these concentrations progressively increase throughout the first 6 months of life. Protein C levels may be <10 IU/dL in preterm or twin neonates or those with respiratory distress without manifesting either purpura fulminans or disseminated intravascular coagulation.
The condition is diagnosed by blood tests in the laboratory when it is noted that special blood clotting test are abnormal. Specifically prothrombin time (PT) or activated partial thromboplastin time(aPTT) are prolonged. The diagnosis is confirmed by an assay detecting very low or absent FXII levels.
The FXII (F12) gene is found on chromosome 5q33-qter.
In hereditary angioedema type III an increased activity of factor XII has been described.
Many conditions mimic or may be mistaken for warfarin necrosis, including pyoderma gangrenosum or necrotizing fasciitis. Warfarin necrosis is also different from another drug eruption associated with warfarin, purple toe syndrome, which usually occurs three to eight weeks after the start of anticoagulation therapy. No report has described this disorder in the immediate postpartum period in patients with protein S deficiency.
Purpura fulminans is rare and most commonly occurs in babies and small children but can also be a rare manifestation in adults when it is associated with severe infections. For example, Meningococcal septicaemia is complicated by purpura fulminans in 10–20% of cases among children. Purpura fulminans associated with congenital (inherited) protein C deficiency occurs in 1:500,000–1,000,000 live births.
The amount of fresh frozen plasma required to reverse disseminated intravascular coagulation associated with purpura fulminans may lead to complications of fluid overload and death, especially in neonates, such as transfusion-related acute lung injury. Exposure to multiple plasma donors over time increases the cumulative risk for transfusion-associated viral infection and allergic reaction to donor proteins found in fresh frozen plasma.
Allergic reactions and alloantibody formation are also potential complications, as with any protein replacement therapy.
Concomitant warfarin therapy in subjects with congenital protein C deficiency is associated with an increased risk of warfarin skin necrosis.
In congenital FXII deficiency treatment is not necessary. In acquired FXII deficiency the underlying problem needs to be addressed.
Heterozygous protein C deficiency occurs in 0.14–0.50% of the general population. Based on an estimated carrier rate of 0.2%, a homozygous or compound heterozygous protein C deficiency incidence of 1 per 4 million births could be predicted, although far fewer living patients have been identified. This low prevalence of patients with severe genetic protein C deficiency may be explained by excessive fetal demise, early postnatal deaths before diagnosis, heterogeneity in the cause of low concentrations of protein C among healthy individuals and under-reporting.
The incidence of protein C deficiency in individuals who present with clinical symptoms has been reported to be estimated at 1 in 20,000.
The first element of treatment is usually to discontinue the offending drug, although there have been reports describing how the eruption evolved little after it had established in spite of continuing the medication. Vitamin K1 can be used to reverse the effects of warfarin, and heparin or its low molecular weight heparin (LMWH) can be used in an attempt to prevent further clotting. None of these suggested therapies have been studied in clinical trials.
Heparin and LMWH act by a different mechanism than warfarin, so these drugs can also be used to prevent clotting during the first few days of warfarin therapy and thus prevent warfarin necrosis (this is called 'bridging').
Based on the assumption that low levels of protein C are involved in the underlying mechanism, common treatments in this setting include fresh frozen plasma or pure activated protein C.
Since the clot-promoting effects of starting administration of 4-hydroxycoumarins are transitory, patients with protein C deficiency or previous warfarin necrosis can still be restarted on these drugs if appropriate measures are taken. These include gradual increase starting from low doses and supplemental administration of protein C (pure or from fresh frozen plasma).
The necrotic skin areas are treated as in other conditions, sometimes healing spontaneously with or without scarring, sometimes going on to require surgical debridement or skin grafting.
Tests for thrombophilia include complete blood count (with examination of the blood film), prothrombin time, partial thromboplastin time, thrombodynamics test, thrombin time and reptilase time, lupus anticoagulant, anti-cardiolipin antibody, anti-β2 glycoprotein 1 antibody, activated protein C resistance, fibrinogen tests, factor V Leiden and prothrombin mutation, and basal homocysteine levels. Testing may be more or less extensive depending on clinical judgement and abnormalities detected on initial evaluation.
For hereditary cases, the patient must have at least 2 abnormal tests plus family history.
There are several treatments available for bleeding due to factor X deficiency, however a specifi FX concentrate is not available (2009).
1. Prothrombin complex concentrate (PCC) supplies FX with a risk of thrombosis.
2. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
3. If vitamin K levels are low, vitamin K can be supplied orally or parenterally.
Treatment of FX deficiency in amyloidosis may be more complex and involve surgery (splenectomy) and chemotherapy.
Blood tests are needed to differentiate FX deficiency from other bleeding disorders. Typical are normal thrombin time, prolonged prothrombin time (PT) and prolonged partial thromboplastin time(PTT). FX antigen and its coagulant activity can be used to classify the severity of the condition:
1. Type I has low levels of FX antigen and activity.
2. Type II has low coagulant activity but normal or borderline FX antigen levels.
The FX (F10) gene is found on chromosome 13q34. Heterogeneous mutations have been described in FX deficient patients.
CBC and blood film: decreased platelets and schistocytes PT, aPTT, fibrinogen: normal Markers of hemolysis: increased unconjugated bilirubin, increased LDH, decreased haptoglobin Negative Coombs test
Creatinine, urea, to follow renal function ADAMSTS-13 gene, activity or inhibitor testing (TTP)
Heparin enhances ATIII activity and neutralizes "activated serine protease coagulation factors." Patients with ATIII deficiency requiring anticoagulant therapy with heparin will need higher doses of heparin. ATIII binds to thrombin and then forms the thrombin-anti thrombin complex or TAT complex. This is a major natural pathway of anticoagulation. This binding of thrombin to AT is greatly enhanced in the presence of heparin. Heparin does not affect vitamin K metabolism, so giving vitamin K1 (Phytonadione) will not reverse the effects of heparin.
Heparin is used as "bridging" therapy when initiating a patient on warfarin in a hospital setting. It can be used in DVT prophylaxis and treatment, acute coronary syndromes, and ST-segment elevated MI.
Antithrombin III deficiency (abbreviated ATIII deficiency) is a of antithrombin III. It is a rare hereditary disorder that generally comes to light when a patient suffers recurrent venous thrombosis and pulmonary embolism, and repetitive intrauterine fetal death (IUFD). Inheritance is usually autosomal dominant, though a few recessive cases have been noted.
The disorder was first described by Egeberg in 1965.
The patients are treated with anticoagulants or, more rarely, with antithrombin concentrate.
In kidney failure, especially nephrotic syndrome, antithrombin is lost in the urine, leading to a higher activity of Factor II and Factor X and in increased tendency to thrombosis.
Treatment with ACE inhibitors is contraindicated in this condition, as these drugs can lead to bradykinin accumulation, which can precipitate disease episodes.
Recognizing HAE is often difficult due to the wide variability in disease expression. The course of the disease is diverse and unpredictable, even within a single patient over their lifetime. This disease may be similar in its presentation to other forms of angioedema resulting from allergies or other medical conditions, but it is significantly different in cause and treatment. When hereditary angioedema is misdiagnosed as an allergy it is most commonly treated with steroids and epinephrine, drugs that are usually ineffective in treating a hereditary angioedema episode. Other misdiagnoses have resulted in unnecessary exploratory surgery for patients with abdominal swelling and other hereditary angioedema patients report that their abdominal pain was wrongly diagnosed as psychosomatic.
HAE accounts for only a small fraction of all cases of angioedema. To avoid potentially fatal consequences such as upper airway obstruction and unnecessary abdominal surgery, the importance of a correct diagnosis cannot be over-emphasized.
Consider hereditary angioedema (HAE) if a patient presents with:
- Recurrent angioedema (without urticaria)
- Recurrent episodes of abdominal pain and vomiting
- Laryngeal edema
- Positive family history of angioedema
A blood test, ideally taken during an episode, can be used to diagnose the condition. Measure: serum complement factor 4 (C4),
C1 inhibitor (C1-INH) antigenic protein, C1 inhibitor (C1-INH) functional level if available.Analysis of complement C1 inhibitor levels may play a role in diagnosis. C4 and C2 are complementary components.
The course of treatment and the success rate is dependent on the type of TMA. Some patients with atypical HUS and TTP have responded to plasma infusions or exchanges, a procedure which replaces proteins necessary for the complement cascade that the patient does not have; however, this is not a permanent solution or treatment, especially for patients with congenital predispositions.
The prevalence of vitamin K deficiency varies by geographic region. For infants in the United States, vitamin K deficiency without bleeding may occur in as many as 50% of infants younger than 5 days old, with the classic hemorrhagic disease occurring in 0.25-1.7% of infants. Therefore, the Committee on Nutrition of the American Academy of Pediatrics recommends that 0.5 to 1.0 mg Vitamin K be administered to all newborns shortly after birth.
Postmenopausal and elderly women in Thailand have high risk of Vitamin K deficiency, compared with the normal value of young, reproductive females.
Current dosage recommendations for Vitamin K may be too low. The deposition of calcium in soft tissues, including arterial walls, is quite common, especially in those suffering from atherosclerosis, suggesting that Vitamin K deficiency is more common than previously thought.
Because colonic bacteria synthesize a significant portion of the Vitamin K required for human needs, individuals with disruptions to or insufficient amounts of these bacteria can be at risk for Vitamin K deficiency. Newborns, as mentioned above, fit into this category, as their colons are frequently not adequately colonized in the first five to seven days of life. (Consumption of the mother's milk can undo this temporary problem.) Another at-risk population comprises those individuals on any sort of long-term antibiotic therapy, as this can diminish the population of normal gut flora.