Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Treatment depends on the anatomy of the malformation as determined by angiography or Magnetic Resonance Imaging (MRI).
Testing for a malformed vein of Galen is indicated when a patient has heart failure which has no obvious cause. Diagnosis is generally achieved by signs such as cranial bruits and symptoms such as expanded facial veins. The vein of Galen can be visualized using ultrasound or Doppler. A malformed Great Cerebral Vein will be noticeably enlarged. Ultrasound is a particularly useful tool for vein of Galen malformations because so many cases occur in infancy and ultrasound can make diagnoses prenatally. Many cases are diagnosed only during autopsy as congestive heart failure occurs very early.
Symptoms of congenital PSS usually appear by six months of age and include failure to gain weight, vomiting, and signs of hepatic encephalopathy (a condition where toxins normally removed by the liver accumulate in the blood and impair the function of brain cells) such as seizures, depression, tremors, drooling, and head pressing. Urate bladder stones may form because of increased amounts of uric acid in circulation and excreted by the kidneys. Initial diagnosis of PSS is through laboratory bloodwork showing either elevated serum bile acids after eating or elevation of fasting blood ammonia levels, which has been shown to have a higher sensitivity and specificity than the bile acids test.
Various diagnostic imaging techniques are used to demonstrate PSS. Ultrasonography is a rapid, convenient, non-invasive, and accurate method for diagnosis of PSS. Ultrasonographic diagnosis of congenital PSS depends on finding an anomalous vessel either in the liver or just caudal to the liver in the dorsal abdomen, usually draining into the caudal vena cava. Ultrasonography can also be used to estimate hepatic volume and vascularity, and to identify related lesions affecting other abdominal structures, such as urinary calculi. Computed tomography (CT) may be considered when ultrasound expertise is lacking or ultrasonography is considered sub-optimal (e.g. because of the conformation of the patient). Control of respiration and careful timing of CT acquisition after contrast injection is necessary for optimal depiction of PSS. Rectal portal scintigraphy using technetium pertechnetate, a technique of imaging involving detection of gamma rays emitted by radionuclides absorbed through the rectum and into the bloodstream, demonstrates the blood vessel bypassing the liver. In certain institutions, scintigraphy is the preferred diagnostic technique, but this leaves the patient radioactive for 24h, which may be inconvenient depending on nursing needs. Portal venography is the definitive method for demonstrating PSS, but is invasive, hence it is best reserved for animals with a known shunt or those considered highly likely to have a shunt that was not detectable by ultrasonography.
Hypoplastic right heart syndrome is less common than hypoplastic left heart syndrome which occurs in 4 out of every 10,000 births. [3].
This rare anomaly requires prenatal diagnosis since it needs immediate and emergency treatment. Pregnant women whose pregnancy is complicated with this anomaly should be referred to a level 3 hospital with pediatric cardiology and pediatric cardiothoracic surgical team.[3]
It can be associated with aortic stenosis.
The surgical treatment involves the resection of the extracranial venous package and ligation of the emissary communicating vein. In some cases of SP, surgical excision is performed for cosmetic reasons. The endovascular technique has been described by transvenous approach combined with direct puncture and the recently endovascular embolization with Onyx.
These lesions usually present in neonates, although they may not come to clinical attention until adulthood (for cosmetic reasons). There is no gender predilection. They are present in approximately 3-6 per 1000 live births.
With a series of operations or even a heart transplant, a newborn can be treated but not be cured. Young individuals who have undergone reconstructive surgery must refer to a cardiologist who is experienced in congenital heart diseases, "Children with HLHS are at an increased level for developing endocarditis." Kids that have been diagnosed with HRHS must limit the physical activity they participate in to their own endurance level.
Simple surgical excision is curative. The recommended treatment is that the skin is peeled off the extra-auricular tissue and protruding cartilage remnants are trimmed. Normal appearance is achieved in majority of cases. The reconstruction successful in true cases of accessory auricle, as it also is in individuals with auricular appendages.
Occasionally, there is only the one single umbilical artery (SUA) present in the umbilical cord. Approximately this affects between 1 in 100 and 1 in 500 pregnancies, making it the most common umbilical abnormality. It is more common in multiple births. Its cause is not known.
Most cords have one vein and two arteries. The vein carries oxygenated blood from the placenta to the baby and the arteries carry deoxygenated blood from the baby to the placenta. In approximately 1% of pregnancies there are only two vessels —usually a single vein and single artery. In about 75% of those cases, the baby is entirely normal and healthy and the missing artery isn't missed at all. One artery can support a pregnancy and does not necessarily indicate problems. For the other 25%, a 2-vessel cord is a sign that the baby has other abnormalities—sometimes life-threatening and sometimes not. SUA does increase the risk of the baby having cardiac, skeletal, intestinal or renal problems. Babies with SUA may have a higher likelihood of having other congenital abnormalities, especially of the heart. However, additional testing (high level ultrasound scans) can rule out many of these abnormalities prior to birth and alleviate parental anxiety. Echocardiograms of the fetus may be advised to ensure the heart is functioning properly. Genetic counseling may be useful, too, especially when weighing the pros and cons of more invasive procedures such as chorionic villus sampling and amniocentesis.
Although the presence of an SUA is a risk factor for additional complications, most fetuses with the condition will not experience other problems, either in utero or after birth. Especially encouraging are cases in which no other soft markers for congenital abnormalities are visible via ultrasound. Prior to ultrasound technology, the only method for determining the presence of a SUA was at birth, following an examination of the placenta. Given that the vast majority of expectant mothers do not receive the kind of advanced ultrasound scanning required to confirm SUA in utero, most cases may never be detected antenatally even today.
Doctors and midwives often suggest parents take the added precaution of having regular growth scans near term to rule out intrauterine growth restriction, which can happen on occasion and warrant intervention. Yet the majority of growth restricted infants with the abnormality also have other defects. Finally, neonates with the finding may also have a higher occurrence of renal problems, therefore close examination of the infant may be warranted shortly after birth. Among SUA infants, there is a slightly elevated risk for post-natal urinary infections.
It may be associated with Edwards syndrome.
Adult presentation in diastematomyelia is unusual. With modern imaging techniques, various types of spinal dysraphism are being diagnosed in adults with increasing frequency. The commonest location of the lesion is at first to third lumbar vertebrae. Lumbosacral adult diastematomyelia is even rarer. Bony malformations and dysplasias are generally recognized on plain x-rays. MRI scanning is often the first choice of screening and diagnosis. MRI generally give adequate analysis of the spinal cord deformities although it has some limitations in giving detailed bone anatomy. Combined myelographic and post-myelographic CT scan is the most effective diagnostic tool in demonstrating the detailed bone, intradural and extradural pathological anatomy of the affected and adjacent spinal canal levels and of the bony spur.
Prenatal ultrasound diagnosis of this anomaly is usually possible in the early to mid third-trimester. An extra posterior echogenic focus between the fetal spinal laminae is seen with splaying of the posterior elements, thus allowing for early surgical intervention and have a favorable prognosis. Prenate ultrasound could also detect whether the diastematomyelia is isolated, with the skin intact or association with any serious neural tube defects. Progressive neurological lesions may result from the "tethering cord syndrome" (fixation of the spinal cord) by the diastematomyelia phenomenon or any of the associated disorders such as myelodysplasia, dysraphia of the spinal cord.
Surgical correction should be considered in the presence of significant left to right shunting (Qp:Qs ≥ 2:1) and pulmonary hypertension. This involves creation of an inter-atrial baffle to redirect the pulmonary venous return into the left atrium. Alternatively, the anomalous vein can be re-implanted directly into the left atrium.
The diagnosis is made by transthoracic or transesophageal echocardiography, angiography, and more recently by CT angiography or MR Angiography.
Surgical treatment is best, when it can be performed. Pressure within the portal vein is measured as the shunt is closed, and it must be kept below 20 cm HO or else portal hypertension will ensue. Methods of shunt attenuation should aim to slowly occlude the vessel over several weeks to months in order to avoid complications associated with portal hypertension. These methods include ameroid ring constrictors, cellophane banding, intravascular or percutaneous silicone hydraulic occluders. The most common methods of attenuation used by veterinarians are ameroid ring constrictors and cellophane banding. Both methods have reportedly good outcomes in both cats and dogs, although the true composition of readily sourced cellophane has been found to be made from plastics (inert) and not cellulose (stimulates a fibrous reaction). Recently, a commercial supplier of regenerated cellulose based cellophane for veterinarians has been established for use of cellophane banding for portosystemic shunts in dogs and cats. Complete closure of extrahepatic shunts results in a very low recurrence rate, while incomplete closure results in a recurrence rate of about 50 percent. However, not all dogs with extrahepatic shunts tolerate complete closure (16 to 68 percent). Intrahepatic shunts are much more difficult to surgically correct than extrahepatic shunts due to their hidden nature, large vessel size, and greater tendency toward portal hypertension when completely closed. When surgery is not an option, PSS is treated as are other forms of liver failure. Dietary protein restriction is helpful to lessen signs of hepatic encephalopathy, and antibiotics such as neomycin or metronidazole and other medicines such as lactulose can reduce ammonia production and absorption in the intestines. The prognosis is guarded for any form of PSS.
It can be diagnosed with CT scan, angiography, transesophageal echocardiography, or cardiac MRI. Unfortunately, less invasive and expensive testing, such as transthoracic echocardiography and CT scanning are generally less sensitive.
Surgery
Surgical intervention is warranted in patients who present with new onset neurological signs and symptoms or have a history of progressive neurological manifestations which can be related to this abnormality. The surgical procedure required for the effective treatment of diastematomyelia includes decompression (surgery) of neural elements and removal of bony spur. This may be accomplished with or without resection and repair of the duplicated dural sacs. Resection and repair of the duplicated dural sacs is preferred since the dural abnormality may partly contribute to the "tethering" process responsible for the symptoms of this condition.
Post-myelographic CT scanning provides individualized detailed maps that enable surgical treatment of cervical diastematomyelia, first performed in 1983.
Observation
Asymptomatic patients do not require surgical treatment. These patients should have regular neurological examinations since it is known that the condition can deteriorate. If any progression is identified, then a resection should be performed.
A "Partial anomalous pulmonary venous connection" (or "Partial anomalous pulmonary venous drainage" or "Partial anomalous pulmonary venous return") is a congenital defect where the left atrium is the point of return for the blood from some (but not all) of the pulmonary veins.
It is less severe than total anomalous pulmonary venous connection which is a life-threatening anomaly requiring emergent surgical correction, usually diagnosed in the first few days of life. Partial anomalous venous connection may be diagnosed at any time from birth to old age. The severity of symptoms, and thus the likelihood of diagnosis, varies significantly depending on the amount of blood flow through the anomalous connections. In less severe cases, with smaller amounts of blood flow, diagnosis may be delayed until adulthood, when it can be confused with other causes of pulmonary hypertension. There is also evidence that a significant number of mild cases are never diagnosed, or diagnosed incidentally. It is associated with other vascular anomalies, and some genetic syndromes such as Turner syndrome.
While most cases of horseshoe kidneys are asymptomatic and discovered upon autopsy, the condition may increase the risk for:
- Kidney obstruction – abnormal placement of ureter may lead to obstruction and dilation of the kidney.
- Kidney infections – associated with vesicoureteral reflux.
- Kidney stones – deviant orientation of kidneys combined with slow urine flow and kidney obstruction may lead to kidney stones.
- Kidney cancer – increased risk of renal cancer, especially Wilms' tumor, transitional cell carcinoma, and an occasional case report of carcinoid tumor. Despite increased risk, the overall risk is still relatively low.
The prevalence of horseshoe kidneys in females with Turner Syndrome is about 15%.
It can be associated with trisomy 18.
It can be associated with venous anomalies like left sided IVC 9.
Fleischer's syndrome is an extremely rare congenital anomaly characterized by displacement of the nipples, occasional polymastia, and hypoplasia of both kidneys.
a combination of various vascular malformations. They are 'complex' because they involve a combination of two different types of vessels.
- CVM: capillary venous malformation
- CLM: capillary lymphatic malformation
- LVM: lymphatic venous malformation
- CLVM: capillary lymphatic venous malformation. CLVM is associated with Klippel-Trenaunay syndrome
- AVM-LM: Arteriovenous malformation- lymphatic malformation
- CM-AVM: capillary malformation- arteriovenous malformation
The following table includes the main types of valvular stenosis and regurgitation. Major types of valvular heart disease not included in the table include mitral valve prolapse, rheumatic heart disease and endocarditis.
Midline cervical clefts are a rare congenital anomaly resulting from incomplete fusion during embryogenesis of the first and second branchial arches in the ventral midline of the neck. The condition presents as a midline cutaneous defect of the anterior neck with a skin projection or sinus, or as a subcutaneous erythematous fibrous cord. Surgical excision is the preferred treatment.
Kaposiform hemangioendothelioma (KHE) is a rare vascular neoplasm that is locally aggressive but without metastatic potential. It occurs particularly in the skin, deep soft tissue, retroperitoneum, mediastinum, and rarely in bone. Although lesions occur solitary, they often involve large areas of the body, such as the head/neck region (40%), trunk (30%), or extremity (30%).
Usually, it is present at birth as a flat, reddish-purple, tense and edematous lesion.
Although half of lesions are congenital, 58% of KHE develop during infancy, 32% between age 1 and 10 years (32%) and 10% after 11 years of age. Moreover, adult onset has been described too with mainly males being affected. Both sexes are affected equally in children.
Lesions are often greater than 5 cm in diameter and can cause visible deformity and pain. During early childhood, KHE may enlarge and after 2 years of age, it may partially regress. Though, it usually persists longterm. In addition, 50% of patients suffer from coagulopathy due to thrombocytopenia (<25,000/mm3), presenting with petechiae and bleeding. This is called the Kasabach-Merritt Phenomenon, which is caused by trapping of platelets and other clotting factors within the tumor. Kasabach-Merritt Phenomenon is less likely in patients with lesions less than 8 cm. As two-thirds of adult-onset KHE tumors are less than 2 cm, KHE in adults is rarely associated with Kasabach-Merritt Phenomenon.
Patients with KHE and Kasabach-Merritt Phenomenon present with petechiae and ecchymosis.
Most KHE tumors are diffuse involving multiple tissue planes and important structures. Resection of KHE is thus often difficult. Treatment of kaposiform hemangioendothelioma is therefore medical. The primary drug is interferon alfa, which is successful in 50% of children. Another option is vincristine, which has lots of side-effects, but has a response rate of 90%. Drug therapy is often used in shrinking the tumor and treating the coagulopathy. However, many of these kaposiform hemangioendotheliomas do not completely regress and remain as a much smaller asymptomatic tumor. However, KHE still has a high mortality rate of 30%. Although complete surgical removal with a large margin has the best reported outcome, it is usually not done because of the risk of bleeding, extensiveness, and the anatomic site of the lesion.
Operative management may be possible for small or localized lesions. Removal of larger areas also may be indicated for symptomatic patients or for patients who have failed farmacotherapy. Resection is not required for lesions that are not causing functional problems, because KHE is benign and because resection could cause deformity.
Sinus pericranii (SP) is a rare disorder characterized by a congenital (or occasionally, acquired) epicranial venous malformation of the scalp. Sinus pericranii is an abnormal communication between the intracranial and extracranial venous drainage pathways. Treatment of this condition has mainly been recommended for aesthetic reasons and prevention of hemorrhage.
Congenital stenosis of vena cava is a congenital anomaly in which the superior vena cava or inferior vena cava has an aberrant interruption or coarctation.
In some cases, it can be asymptomatic, and in other cases it can lead to fluid accumulation and cardiopulmonary collapse.
Cryptophthalmos is a rare congenital anomaly in which the skin is continuous over the eyeball with absence of eyelids. It is classified into three types: complete, incomplete and abortive. Failure of eyelid separation can be associated with maldevelopment of the underlying cornea and microphthalmia. Cryptophthalmos usually occurs on both sides and occurs in association with other multiple malformations collectively referred to as Fraser syndrome.