Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Three main points in diagnosing thumb hypoplasia are: width of the first web space, instability of the involved joints and function of the thumb. Thorough physical examination together with anatomic verification at operation reveals all the anomalies. An X-ray of the hand and thumb in two directions is always mandatory. When the pediatrician thinks the condition is associated with some kind of syndrome other tests will be done. More subtle manifestations of types I and II may not be recognized, especially when more obvious manifestations of longitudinal radial deficiency in the opposite extremity are present. Therefore, a careful examination of both hands is important.
When it comes to treatment it is important to differentiate a thumb that needs stability, more web width and function, or a thumb that needs to be replaced by the index finger. Severe thumb hypoplasia is best treated by pollicization of the index finger. Less severe thumb hypoplasia can be reconstructed by first web space release, ligament reconstruction and muscle or tendon transfer.
It has been recommended that pollicization is performed before 12 months, but a long-term study of pollicizations performed between the age of 9 months and 16 years showed no differences in function related to age at operation.
It is important to know that every reconstruction of the thumb never gives a normal thumb, because there is always a decline of function. When a child has a good index finger, wrist and fore-arm the maximum strength of the thumb will be 50% after surgery in comparison with a normal thumb. The less developed the index finger, wrist and fore-arm is, the less strength the reconstructed thumb will have after surgery.
Most children with symbrachydactyly have excellent function in daily activities. Due to the length of their arm, they do not qualify for most artificial limbs. However, some adaptive prosthetics and equipment for sports and leisure activities may be helpful when the child is older. Children who demonstrate some functional movement in their remaining fingers and within the palm are evaluated for possible surgery such as toe transfers.
Research on prenatal diagnosis has shown that a diagnosis can be made prenatally in approximately 50% of fetuses presenting arthrogryposis. It could be found during routine ultrasound scanning showing a lack of mobility and abnormal position of the foetus. Nowadays there are more options for visualization of details and structures can be seen well, like the use of 4D ultrasound. In clinic a child can be diagnosed with arthrogryposis with physical examination, confirmed by ultrasound, , or muscle biopsy.
No surgical outcomes studies exist for evaluating the function of the thumbs after an on-top plasty reconstruction.
Few clinical outcome studies exist regarding the treatment of central polydactyly. Tada and colleagues note that satisfactory surgical correction of central polydactyly is difficult to achieve and that outcomes are generally poor. In Tada’s study, 12 patients were reviewed. All patients required secondary surgical procedures to address flexion contractures and angular deviation at the IP joint level.
However, several primary factors contribute to the complexity of central polydactyly reconstruction. Hypoplastic joints and soft tissues that predispose the reconstructed finger to joint contracture, and angular deformities as well as complex tendon anomalies, are often difficult to address. Therefore, treatment is wholly dependent on the anatomic components present, the degree of syndactyly, and the function of the duplicated finger.
Many other surgeries are also able to improve function in joints of arthrogryposis patients. These surgeries usually exist out of tendon transfers and skin flap movements, adjusted to the individual.
The complete or partial absence of the pectoralis muscle is the malformation that defines Poland Syndrome. It can be treated by inserting a custom implant designed by CAD (computer aided design). A 3D reconstruction of the patient's chest is performed from a medical scanner to design a virtual implant perfectly adapted to the anatomy of each one. The implant is made of medical silicone unbreakable rubber. This treatment is purely cosmetic and does not make up for the patient's imbalanced upper body strength.
The Poland syndrome malformations being morphological, correction by custom implant is a first-line treatment. This technique allows a wide variety of patients to be treated with good outcomes. Poland Syndrome can be associated with bones, subcutaneous and mammary atrophy: if the first, as for pectus excavatum, is successfully corrected by a custom implant, the others can require surgical intervention such as lipofilling or silicone breast implant, in a second operation.
Symbrachydactyly is a congenital abnormality, characterized by limb anomalies consisting of brachydactyly, cutaneous syndactyly and global hypoplasia of the hand or foot. In many cases, bones will be missing from the fingers and some fingers or toes may be missing altogether. The ends of the hand may have "nubbins"—small stumps where the finger would have developed, which may have tiny residual nails.
Symbrachydactyly has been reported to appear without other combined limb anomalies and usually in one arm in 1 in 30,000 births to 1 in 40,000 births.
The cause of symbrachydactyly is unknown. One possible cause might be an interruption of the blood supply to the developing arm at four to six weeks of pregnancy. There is no link to anything the mother did or did not do during pregnancy. There is also no increased risk of having another child with the same condition or that the child will pass the condition on to his or her children.
In most cases, children born with symbrachydactyly are able to adapt to their physical limitations and experience a fully functional life with no treatment. Most children with this condition can use their hands well enough to do all the usual things children do. Possible treatment includes surgery or a routine of regularly stretching the fingers.
The surgery takes place under general anaesthesia and lasts less than 1 hour. The surgeon prepares the locus to the size of the implant after performing a 8-cm axillary incision and inserts the implant beneath the skin. The closure is made in 2 planes.
The implant will replace the pectoralis major muscle, thus enabling the thorax to be symmetrical and, in women, the breast as well. If necessary, especially in the case of women, a second operation will complement the result by the implantation of a breast implant and / or lipofilling.
Lipomodelling is progressively used in the correction of breast and chest wall deformities. In Poland syndrome, this technique appears to be a major advance that will probably revolutionize the treatment of severe cases. This is mainly due to its ability to achieve previously unachievable quality of reconstruction with minimal scaring.
MRI imaging can be used to detect whether the abducens nerve is present.
Since Duane-radial ray syndrome is a genetic disorder, a genetic test would be performed. One test that can be used is the SALL4 sequence analysis that is used to detect if SALL4 is present. If there is no pathogenic variant observed, a deletion/duplication analysis can be ordered following the SALL4 sequence analysis. As an alternative, another genetic test called a multi-gene panel can be ordered to detect SALL4 and any other genes of interest. The methods used for this panel vary depending on the laboratory.
There is no known cure for this syndrome. Patients usually need ophthalmic surgery and may also need dental surgery
Genetic counseling and screening of the mother's relatives is recommended.
Cenani–Lenz syndactylism, also known as Cenani–Lenz syndrome or Cenani–syndactylism, is an autosomal recessive congenital malformation syndrome involving both upper and lower extremities.
The syndrome is named after Turkish (Asim Cenani) and German (Widukind Lenz) medical geneticists.
While there is no cure for BGS, symptoms can be treated as they arise. Surgery shortly after birth can repair craniosynostosis, as well as defects in the hand to create a functional grasp. There are risks associated with untreated craniosynostosis, therefore surgery is often needed to separate and reshape the bones. Since patients with a RECQL4 mutation may be at an increased risk of developing cancer, surveillance is recommended.
Radial aplasia is a congenital defect which affects the formation of the radius bone in the arm. The radius is the lateral bone which connects to the wrist via articulation with the carpal bones. A child born with this condition has either a short or absent radius bone in one or both of his or her arm(s). Radial aplasia also results in the thumb being either partly formed or completely absent from the hand. Radial aplasia is connected with the condition VACTERL association. The cause for radial aplasia in unknown, but it widely believed to occur within the first ten weeks of gestation.
Diagnosis depends on the clinical scenario. However, karyotyping is an essential test for diagnosis.
Antley–Bixler syndrome, also called trapezoidocephaly-synostosis syndrome, is a rare, very severe autosomal recessive congenital disorder characterized by malformations and deformities affecting the majority of the skeleton and other areas of the body.
In cases of a minor deviation of the wrist, treatment by splinting and stretching alone may be a sufficient approach in treating the radial deviation in RD. Besides that, the parent can support this treatment by performing passive exercises of the hand. This will help to stretch the wrist and also possibly correct any extension contracture of the elbow. Furthermore, splinting is used as a postoperative measure trying to avoid a relapse of the radial deviation.
This syndrome is due to mutations in the Nance Horan gene (NHS) which is located on the short arm of the X chromosome (Xp22.13).
Danforth (1921) reported that middigital hair was present in men more often than in women. Caucasians were found to have a higher incidence of middle phalangeal hair than other ethnic groups, including Afro-Americans, American Indians, and Japanese.
Saldanha and Guinsburg (1961) studied the presence or absence of middigital hair in a white population of Sao Paulo, Brazil, including 131 males and 158 females, and compared their findings with those of previous reports. The frequencies of individuals without midphalangeal hair showed striking population differences. The range among northern Europeans varied from 20 to 30%, and among Mediterraneans, from 30 to 50%. Among Japanese, American Indians, and blacks, the figures varied between about 60% and 90%. The trait was virtually absent among Eskimos.
- Midphalangeal hairiness (%)
Baller–Gerold syndrome (BGS) is a rare genetic syndrome that involves premature fusion of the skull bones and malformations of facial, forearm and hand bones. The symptoms of Baller–Gerold syndrome overlap with features of a few other genetics disorders: Rothmund-Thomson syndrome and RAPADILINO syndrome. The prevalence of BGS is unknown, as there have only been a few reported cases, but it is estimated to be less than 1 in a million. The name Baller-Gerold comes from the researchers Baller and Gerold who discovered the first three cases.
Classification of radial dysplasia is practised through different models. Some only include the different deformities or absences of the radius, where others also include anomalies of the thumb and carpal bones. The Bayne and Klug classification discriminates four different types of radial dysplasia. A fifth type was added by Goldfarb et al. describing a radial dysplasia with participation of the humerus. In this classification only anomalies of the radius and the humerus are taken in consideration. James and colleagues expanded this classification by including deficiencies of the carpal bones with a normal distal radius length as type 0 and isolated thumb anomalies as type N.
Type N: Isolated thumb anomaly
Type 0: Deficiency of the carpal bones
Type I: Short distal radius
Type II: Hypoplastic radius in miniature
Type III: Absent distal radius
Type IV: Complete absent radius
Type V: Complete absent radius and manifestations in the proximal humerus
The term absent radius can refer to the last 3 types.
First options for treatment are conservative, using hot or cold packs, rest and NSAID's at first. If no improvement is made, a splint or brace can be used to keep the deviated arm straight. When none of the conservative treatments work surgical intervention is designated.