Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A diagnosis of TTP is based on the clinical symptoms with the concomitant presence of thrombocytopenia (platelet count below 100×10/L) and microangiopathic hemolytic anemia with schistocytes on the blood smear, a negative direct antiglobulin test (coombs test), elevated levels of hemolysis markers (such as total bilirubin, LDH, free hemoglobin and an unmeasurable haptoglobin), after exclusion of any other apparent cause.
USS can present similar to the following diseases which have to be excluded: fulminant infections, disseminated intravascular coagulation, autoimmune hemolytic anemia, Evans syndrome, the typical and atypical form of hemolytic uremic syndrome (HUS), HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome, pre-eclampsia, heparin-induced thrombocytopenia (HIT), cancer that is often accompanied with metastasis, kidney injury, antiphospholipid antibody syndrome and side effects from hematopoietic stem cell transplantation.
Of note is that pregnancy associated affections like pre-eclampsia, eclampsia and HELLP syndrome can overlap in their presentation as pregnancy can trigger TTP episodes.
Patients with fulminant infections, disseminated intravascular coagulation, HELLP syndrome, pancreatitis, liver disease and other active inflammatory conditions may have reduced ADAMTS13 activity but almost never a relevant severe ADAMTS13 deficiency <10% of the normal.
A severe ADAMTS13 deficiency below 5% or <10% of the normal (depending on the definitions) is highly specific for the diagnosis of TTP. ADAMTS13 activity assays are based on the direct or indirect measurement of VWF-cleavage products. Its activity should be measured in blood samples taken before therapy has started, to prevent false high ADAMTS13 activity. If a severe ADAMTS13 deficiency is present an ADAMTS13 inhibitor assay is needed to distinguish between the acquired, autoantibody-mediated and the congenital form of TTP (USS). The presence of antibodies can be tested by ELISA or functional inhibitor assays. The level of ADAMTS13 inhibitor may be fluctuating over the course of disease and depends on free circulatory antibodies, therefore an onetime negative test result does not always exclude the presence of ADAMTS13 inhibitors and thereby an autoimmune origin of TTP. A severe ADAMTS13 deficiency in the absence of an inhibitor, confirmed on a second time point in a healthy episode of a possible USS patient, usually sets the trigger to perform a molecular analysis of the "ADAMTS13" gene to confirm a mutation. In unclear cases a plasma infusion trial can be done, showing an USS in the absence of anti-ADAMTS13-antibodies a full recovery of infused plasma-ADAMTS13 activity as well as a plasma half-life of infused ADAMTS13 activity of 2–4 days. A deficiency of ADAMTS13 activity in first-degree relatives is also a very strong indicator for an Upshaw-Schulman Syndrome.
Several therapy developments for TTP emerged during recent years. Artificially produced ADAMTS13 has been used in mice and testing in humans has been announced. Another drug in development is targeting VWF and its binding sites, thereby reducing VWF-platelet interaction, especially on ULVWF during a TTP episode. Among several (multi-)national data bases a worldwide project has been launched to diagnose USS patients and collect information about them to gain new insights into this rare disease with the goal to optimize patient care.
TTP is characterized by thrombotic microangiopathy (TMA), the formation of blood clots in small blood vessels throughout the body, which can lead to microangiopathic hemolytic anemia and thrombocytopenia. This characteristic is shared by two related syndromes, hemolytic-uremic syndrome (HUS) and atypical hemolytic uremic syndrome (aHUS). Consequently, differential diagnosis of these TMA-causing diseases is essential. In addition to TMA, one or more of the following symptoms may be present in each of these diseases: neurological symptoms (e.g. confusion, cerebral convulsions seizures,); kidney impairment (e.g. elevated creatinine, decreased estimated glomerular filtration rate [eGFR], abnormal urinalysis); and gastrointestinal (GI) symptoms (e.g. diarrhea nausea/vomiting, abdominal pain, gastroenteritis. Unlike HUS and aHUS, TTP is known to be caused by an acquired defect in the ADAMTS13 protein, so a lab test showing ≤5% of normal ADAMTS13 levels is indicative of TTP. ADAMTS13 levels above 5%, coupled with a positive test for shiga-toxin/enterohemorrhagic "E. coli" (EHEC), are more likely indicative of HUS, whereas absence of shiga-toxin/EHEC can confirm a diagnosis of aHUS.
Blood tests are neede to differentiate FVII deficiency from other bleeding disorders. Typical is a discordance between the prolonged prothrombin time (PT) and normal levels for the activated partial thromboplastin time (APTT). FVII levels are <10IU/dl in homozygous individuals, and between 20-60 in heterozygous carriers. The FCVII: C assay supports the diagnosis.
The FVII gene (F7) is found on chromosome 13q34. Heterogeneous mutations have been described in FVII deficient patients.
The condition is diagnosed by blood tests in the laboratory when it is noted that special blood clotting test are abnormal. Specifically prothrombin time (PT) or activated partial thromboplastin time(aPTT) are prolonged. The diagnosis is confirmed by an assay detecting very low or absent FXII levels.
The FXII (F12) gene is found on chromosome 5q33-qter.
In hereditary angioedema type III an increased activity of factor XII has been described.
The mortality rate is around 95% for untreated cases, but the prognosis is reasonably favorable (80–90% survival) for patients with idiopathic TTP diagnosed and treated early with plasmapheresis.
There are several treatments available for factor VII deficiency; they all replace deficient FVII.
1. Recombinant FVIIa concentrate (rFVIIa) is a recombinant treatment that is highly effective and has no risk of fluid overload or viral disease. It may be the optimal therapy.
2. Plasma derived Factor VII concentrate (pdFVII) : This treatment is suitable for surgery but can lead to thrombosis. It is virus attenuated.
3. Prothrombin complex concentrate (PCC) containing factor VII: this treatment is suitable for surgery, but has a risk of thrombosis. It is virus attenuated.
4. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
CBC and blood film: decreased platelets and schistocytes PT, aPTT, fibrinogen: normal Markers of hemolysis: increased unconjugated bilirubin, increased LDH, decreased haptoglobin Negative Coombs test
Creatinine, urea, to follow renal function ADAMSTS-13 gene, activity or inhibitor testing (TTP)
In congenital FXII deficiency treatment is not necessary. In acquired FXII deficiency the underlying problem needs to be addressed.
There are divergent views as to whether everyone with an unprovoked episode of thrombosis should be investigated for thrombophilia. Even those with a form of thrombophilia may not necessarily be at risk of further thrombosis, while recurrent thrombosis is more likely in those who have had previous thrombosis even in those who have no detectable thrombophilic abnormalities. Recurrent thromboembolism, or thrombosis in unusual sites (e.g. the hepatic vein in Budd-Chiari syndrome), is a generally accepted indication for screening. It is more likely to be cost-effective in people with a strong personal or family history of thrombosis. In contrast, the combination of thrombophilia with other risk factors may provide an indication for preventative treatment, which is why thrombophilia testing may be performed even in those who would not meet the strict criteria for these tests. Searching for a coagulation abnormality is not normally undertaken in patients in whom thrombosis has an obvious trigger. For example, if the thrombosis is due to immobilization after recent orthopedic surgery, it is regarded as "provoked" by the immobilization and the surgery and it is less likely that investigations will yield clinically important results.
When venous thromboembolism occurs when a patient is experiencing transient major risk factors such as prolonged immobility, surgery, or trauma, testing for thrombophilia is not appropriate because the outcome of the test would not change a patient's indicated treatment. In 2013, the American Society of Hematology, as part of recommendations in the Choosing Wisely campaign, cautioned against overuse of thrombophilia screening; false positive results of testing would lead to people inappropriately being labeled as having thrombophilia, and being treated with anticoagulants without clinical need
In the United Kingdom, professional guidelines give specific indications for thrombophilia testing. It is recommended that testing be done only after appropriate counseling, and hence the investigations are usually not performed at the time when thrombosis is diagnosed but at a later time. In particular situations, such as retinal vein thrombosis, testing is discouraged altogether because thrombophilia is not regarded as a major risk factor. In other rare conditions generally linked with hypercoagulability, such as cerebral venous thrombosis and portal vein thrombosis, there is insufficient data to state for certain whether thrombophilia screening is helpful, and decisions on thrombophilia screening in these conditions are therefore not regarded as evidence-based. If cost-effectiveness (quality-adjusted life years in return for expenditure) is taken as a guide, it is generally unclear whether thrombophilia investigations justify the often high cost, unless the testing is restricted to selected situations.
Recurrent miscarriage is an indication for thrombophilia screening, particularly antiphospholipid antibodies (anti-cardiolipin IgG and IgM, as well as lupus anticoagulant), factor V Leiden and prothrombin mutation, activated protein C resistance and a general assessment of coagulation through an investigation known as thromboelastography.
Women who are planning to use oral contraceptives do not benefit from routine screening for thrombophilias, as the absolute risk of thrombotic events is low. If either the woman or a first-degree relative has suffered from thrombosis, the risk of developing thrombosis is increased. Screening this selected group may be beneficial, but even when negative may still indicate residual risk. Professional guidelines therefore suggest that alternative forms of contraception be used rather than relying on screening.
Thrombophilia screening in people with arterial thrombosis is generally regarded unrewarding and is generally discouraged, except possibly for unusually young patients (especially when precipitated by smoking or use of estrogen-containing hormonal contraceptives) and those in whom revascularization, such as coronary arterial bypass, fails because of rapid occlusion of the graft.
The cardinal features of purpura investigations are the same as those of disseminated intravascular coagulation: prolonged plasma clotting times, thrombocytopenia, reduced plasma fibrinogen concentration, increased plasma fibrin-degradation products and occasionally microangiopathic haemolysis.
The amount of fresh frozen plasma required to reverse disseminated intravascular coagulation associated with purpura fulminans may lead to complications of fluid overload and death, especially in neonates, such as transfusion-related acute lung injury. Exposure to multiple plasma donors over time increases the cumulative risk for transfusion-associated viral infection and allergic reaction to donor proteins found in fresh frozen plasma.
Allergic reactions and alloantibody formation are also potential complications, as with any protein replacement therapy.
Concomitant warfarin therapy in subjects with congenital protein C deficiency is associated with an increased risk of warfarin skin necrosis.
The course of treatment and the success rate is dependent on the type of TMA. Some patients with atypical HUS and TTP have responded to plasma infusions or exchanges, a procedure which replaces proteins necessary for the complement cascade that the patient does not have; however, this is not a permanent solution or treatment, especially for patients with congenital predispositions.
Laboratory tests for thrombocytopenia might include full blood count, liver enzymes, kidney function, vitamin B levels, folic acid levels, erythrocyte sedimentation rate, and peripheral blood smear. If the cause for the low platelet count remains unclear, a bone marrow biopsy is usually recommended to differentiate cases of decreased platelet production from cases of peripheral platelet destruction.
Thrombocytopenia in hospitalized alcoholics may be caused by spleen enlargement, folate deficiency, and, most frequently, the direct toxic effect of alcohol on production, survival time, and function of platelets. Platelet count begins to rise after 2 to 5 days' abstinence from alcohol. The condition is generally benign, and clinically significant hemorrhage is rare.
In severe thrombocytopenia, a bone marrow study can determine the number, size and maturity of the megakaryocytes. This information may identify ineffective platelet production as the cause of thrombocytopenia and rule out a malignant disease process at the same time.
Tests for thrombophilia include complete blood count (with examination of the blood film), prothrombin time, partial thromboplastin time, thrombodynamics test, thrombin time and reptilase time, lupus anticoagulant, anti-cardiolipin antibody, anti-β2 glycoprotein 1 antibody, activated protein C resistance, fibrinogen tests, factor V Leiden and prothrombin mutation, and basal homocysteine levels. Testing may be more or less extensive depending on clinical judgement and abnormalities detected on initial evaluation.
For hereditary cases, the patient must have at least 2 abnormal tests plus family history.
There are several treatments available for bleeding due to factor X deficiency, however a specifi FX concentrate is not available (2009).
1. Prothrombin complex concentrate (PCC) supplies FX with a risk of thrombosis.
2. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
3. If vitamin K levels are low, vitamin K can be supplied orally or parenterally.
Treatment of FX deficiency in amyloidosis may be more complex and involve surgery (splenectomy) and chemotherapy.
Blood tests are needed to differentiate FX deficiency from other bleeding disorders. Typical are normal thrombin time, prolonged prothrombin time (PT) and prolonged partial thromboplastin time(PTT). FX antigen and its coagulant activity can be used to classify the severity of the condition:
1. Type I has low levels of FX antigen and activity.
2. Type II has low coagulant activity but normal or borderline FX antigen levels.
The FX (F10) gene is found on chromosome 13q34. Heterogeneous mutations have been described in FX deficient patients.
Treatment of thrombotic thrombocytopenic purpura (TTP) is a medical emergency, since the associated hemolytic anemia and platelet activation can lead to renal failure and changes in the level of consciousness. Treatment of TTP was revolutionized in the 1980s with the application of plasmapheresis. According to the Furlan-Tsai hypothesis, this treatment works by removing antibodies against the von Willebrand factor-cleaving protease ADAMTS-13. The plasmapheresis procedure also adds active ADAMTS-13 protease proteins to the patient, restoring a normal level of von Willebrand factor multimers. Patients with persistent antibodies against ADAMTS-13 do not always manifest TTP, and these antibodies alone are not sufficient to explain how plasmapheresis treats TTP.
Generally accepted reference range for absolute neutrophil count (ANC) in adults is 1500 to 8000 cells per microliter (µl) of blood. Three general guidelines are used to classify the severity of neutropenia based on the ANC (expressed below in cells/µl):
- Mild neutropenia (1000 <= ANC < 1500): minimal risk of infection
- Moderate neutropenia (500 <= ANC < 1000): moderate risk of infection
- Severe neutropenia (ANC < 500): severe risk of infection.
Each of these are either derived from laboratory tests or via the formula below:
ANC = formula_1
Neutropenia that is developed in response to chemotherapy typically becomes evident in seven to fourteen days after treatment. Conditions that indicate the presence of neutropenic fever are implanted devices; leukemia induction; the compromise of mucosal, mucociliary and cutaneous barriers; a rapid decline in absolute neutrophil count, duration of neutropenia >7–10 days, and other illnesses that exist in the patient.
Signs of infection in patients can be subtle. Fevers are a common and early observation. Sometimes overlooked is the presence of hypothermia, which can be present in sepsis. Physical examination and accessing the history and physical examination is focussed on sites of infection. Indwelling line sites, areas of skin breakdown, sinuses, nasopharynx, bronchi and lungs, alimentary tract, and skin are assessed.
The diagnosis of neutropenia is done via the low neutrophil count detection on a full blood count. Generally, other investigations are required to arrive at the right diagnosis. When the diagnosis is uncertain, or serious causes are suspected, bone marrow biopsy may be necessary. Other investigations commonly performed: serial neutrophil counts for suspected cyclic neutropenia, tests for antineutrophil antibodies, autoantibody screen (and investigations for systemic lupus erythematosus), vitamin B and folate assays. Rectal examinations are usually not performed due to the increased risk of introducing bacteria into the blood stream and the possible development of rectal abscesses. A routine chest X-ray and urinalysis may be can not be relied upon or considered normal due to the absence of neutrophils.
The basic tests performed when an immunodeficiency is suspected should include a full blood count (including accurate lymphocyte and granulocyte counts) and immunoglobulin levels (the three most important types of antibodies: IgG, IgA and IgM).
Other tests are performed depending on the suspected disorder:
- Quantification of the different types of mononuclear cells in the blood (i.e. lymphocytes and monocytes): different groups of T lymphocytes (dependent on their cell surface markers, e.g. CD4+, CD8+, CD3+, TCRαβ and TCRγδ), groups of B lymphocytes (CD19, CD20, CD21 and Immunoglobulin), natural killer cells and monocytes (CD15+), as well as activation markers (HLA-DR, CD25, CD80 (B cells).
- Tests for T cell function: skin tests for delayed-type hypersensitivity, cell responses to mitogens and allogeneic cells, cytokine production by cells
- Tests for B cell function: antibodies to routine immunisations and commonly acquired infections, quantification of IgG subclasses
- Tests for phagocyte function: reduction of nitro blue tetrazolium chloride, assays of chemotaxis, bactericidal activity.
Due to the rarity of many primary immunodeficiencies, many of the above tests are highly specialised and tend to be performed in research laboratories.
Criteria for diagnosis were agreed in 1999. For instance, an antibody deficiency can be diagnosed in the presence of low immunoglobulins, recurrent infections and failure of the development of antibodies on exposure to antigens. The 1999 criteria also distinguish between "definitive", "probable" and "possible" in the diagnosis of primary immunodeficiency. "Definitive" diagnosis is made when it is likely that in 20 years, the patient has a >98% chance of the same diagnosis being made; this level of diagnosis is achievable with the detection of a genetic mutation or very specific circumstantial abnormalities. "Probable" diagnosis is made when no genetic diagnosis can be made, but the patient has all other characteristics of a particular disease; the chance of the same diagnosis being made 20 years later is estimated to be 85-97%. Finally, a "possible" diagnosis is made when the patient has only some of the characteristics of a disease are present, but not all.
Current research suggests that nearly 8% of the population has at least partial DPD deficiency. A diagnostics determination test for DPD deficiency is available and it is expected that with a potential 500,000 people in North America using 5-FU this form of testing will increase. The whole genetic events affecting the DPYD gene and possibly impacting on its function are far from being elucidated, and epigenetic regulations could probably play a major role in DPD deficiency. It seems that the actual incidence of DPD deficiency remains to be understood because it could depend on the very technique used to detect it. Screening for genetic polymorphisms affecting the "DPYD" gene usually identify less than 5% of patients bearing critical mutations, whereas functional studies suggest that up to 20% of patients could actually show various levels of DPD deficiency.
Women could be more at risk than men. It is more common among African-Americans than it is among Caucasians.
The diagnosis of Nezelof syndrome will indicate a deficiency of T-cells, additionally in ascertaining the condition the following is done:
The differential diagnosis for this condition consists of acquired immune deficiency syndrome and severe combined immunodeficiency syndrome
The treatment of primary immunodeficiencies depends foremost on the nature of the abnormality. Somatic treatment of primarily genetic defects is in its infancy. Most treatment is therefore passive and palliative, and falls into two modalities: managing infections and boosting the immune system.
Reduction of exposure to pathogens may be recommended, and in many situations prophylactic antibiotics or antivirals may be advised.
In the case of humoral immune deficiency, immunoglobulin replacement therapy in the form of intravenous immunoglobulin (IVIG) or subcutaneous immunoglobulin (SCIG) may be available.
In cases of autoimmune disorders, immunosuppression therapies like corticosteroids may be prescribed.