Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
A combination of medical tests are used to diagnosis kniest dysplasia. These tests can include:
- Computer Tomography Scan(CT scan) - This test uses multiple images taken at different angles to produce a cross-sectional image of the body.
- Magnetic Resonance Imaging (MRI) - This technique proves detailed images of the body by using magnetic fields and radio waves.
- EOS Imaging - EOS imaging provides information on how musculoskeletal system interacts with the joints. The 3D image is scanned while the patient is standing and allows the physician to view the natural, weight-bearing posture.
- X-rays - X-ray images will allow the physician to have a closer look on whether or not the bones are growing abnormally.
The images taken will help to identify any bone anomalies. Two key features to look for in a patient with kniest dysplasia is the presence of dumb-bell shaped femur bones and coronal clefts in the vertebrae. Other features to look for include:
- Platyspondyly (flat vertebral bodies)
- Kyphoscoliosis (abnormal rounding of the back and lateral curvature of the spine)
- Abnormal growth of epiphyses, metaphyses, and diaphysis
- Short tubular bones
- Narrowed joint spaces
Genetic Testing - A genetic sample may be taken in order to closely look at the patient's DNA. Finding an error in the COL2A1 gene will help identify the condition as a type II chondroldysplasia.
This condition can be diagnosed by genetic testing. Furthermore, an echocardiogram and X-ray may help in the diagnosis.
Fibrochondrogenesis is quite rare. A 1996 study from Spain determined a national minimal prevalence for the disorder at 8 cases out of 1,158,067 live births.
A United Arab Emirates (UAE) University report, from early 2003, evaluated the results of a 5-year study on the occurrence of a broad range of osteochondrodysplasias. Out of 38,048 newborns in Al Ain, over the course of the study period, fibrochondrogenesis was found to be the most common of the recessive forms of osteochondrodysplasia, with a prevalence ratio of 1.05:10,000 births.
While these results represented the most common occurrence within the group studied, they do not dispute the rarity of fibrochondrogenesis. The study also included the high rate of consanguinous marriages as a prevailing factor for these disorders, as well as the extremely low rate of diagnosis-related pregnancy terminations throughout the region.
Achondroplasia can be detected before birth by prenatal ultrasound. A DNA test can be performed before birth to detect homozygosity, wherein two copies of the mutant gene are inherited, a lethal condition leading to stillbirths. Clinical features include megalocephaly, short limbs, prominent forehead, thoracolumbar kyphosis and mid-face hypoplasia. Complications like dental malocclusion, hydrocephalus and repeated otitis media can be observed. The risk of death in infancy is increased due to the likelihood of compression of the spinal cord with or without upper airway obstruction.
Exact diagnosis remains widely built on precise history taking, with the characteristic clinical and radiographic skeletal features. Genetic diagnosis is based on DNA sequencing. Because plasma COMP levels are significantly reduced in patients with COMP mutations, such as pseudoachondroplasia, measuring plasma COMP levels has become a reliable means of diagnosing this and pathopysiologically similar disorders.
Early journal reports of boomerang dysplasia suggested X-linked recessive inheritance, based on observation and family history. It was later discovered, however, that the disorder is actually caused by a genetic mutation fitting an autosomal dominant genetic profile.
Autosomal dominant inheritance indicates that the defective gene responsible for a disorder is located on an autosome, and only one copy of the gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
Boomerang dysplasia, although an autosomal dominant disorder, is "not" inherited because those afflicted do not live beyond infancy. They cannot pass the gene to the next generation.
The fibrocartilaginous effects of fibrochondrogenesis on chondrocytes has shown potential as a means to produce therapeutic cellular biomaterials via tissue engineering and manipulation of stem cells, specifically human embryonic stem cells.
Utilization of these cells as curative cartilage replacement materials on the cellular level has shown promise, with beneficial applications including the repair and healing of damaged knee menisci and synovial joints; temporomandibular joints, and vertebra.
Like treatment options, the prognosis is dependent on the severity of the symptoms. Despite the various symptoms and limitations, most individuals have normal intelligence and can lead a normal life.
The differential diagnosis of this condition consists of:
- Hypertrophic cardiomyopathy
- Beckwith-Wiedemann syndrome
- Berardinelli-Seip congenital lipodystrophy
A skeletal survey is useful to confirm the diagnosis of achondroplasia. The skull is large, with a narrow foramen magnum, and relatively small skull base. The vertebral bodies are short and flattened with relatively large intervertebral disk height, and there is congenitally narrowed spinal canal. The iliac wings are small and squared, with a narrow sciatic notch and horizontal acetabular roof. The tubular bones are short and thick with metaphyseal cupping and flaring and irregular growth plates. Fibular overgrowth is present. The hand is broad with short metacarpals and phalanges, and a trident configuration. The ribs are short with cupped anterior ends. If the radiographic features are not classic, a search for a different diagnosis should be entertained. Because of the extremely deformed bone structure, people with achondroplasia are often "double jointed".
The diagnosis can be made by fetal ultrasound by progressive discordance between the femur length and biparietal diameter by age. The trident hand configuration can be seen if the fingers are fully extended."
Another distinct characteristic of the syndrome is thoracolumbar gibbus in infancy.
Accurate assessment of plain radiographic findings remains an important contributor to diagnosis of pseudoachondroplasia. It is noteworthy that vertebral radiographic abnormalities tend to resolve over time. Epiphyseal abnormalities tend to run a progressive course. Patients usually suffer early-onset arthritis of hips and knees. Many unique skeletal radiographic abnormalities of patients with pseudoachondroplasia have been reported in the literature.
- Together with rhizomelic limb shortening, the presence of epiphyseal-metaphyseal changes of the long bones is a distinctive radiologic feature of pseudoachondroplasia.
- Hypoplastic capital femoral epiphyses, broad short femoral necks, coxa vara, horizontality of acetabular roof and delayed eruption of secondary ossification center of os pubis and greater trochanter.
- Dysplastic/hypoplastic epiphyses especially of shoulders and around the knees.
- Metaphyseal broadening, irregularity and metaphyseal line of ossification. These abnormalities that are typically encountered in proximal humerus and around the knees are collectively known as “rachitic-like changes”.
- Radiographic lesions of the appendicular skeleton are typically bilateral and symmetric.
- Oval shaped vertebrae with anterior beak originating and platyspondyly demonstrated on lateral radiographs of the spine.
- Normal widening of the interpedicular distances caudally demonstrated on anteroposterior radiographs of the dorsolumbar region. This is an important differentiating feature between pseudoachondroplasia and achondroplasia.
- Odontoid hypoplasia may occur resulting in cervical instability.
Osteogenesis imperfecta is a rare condition in which bones break easily. There are multiple genetic mutations in different genes for collagen that may result in this condition. It can be treated with some drugs to promote bone growth, by surgically implanting metal rods in long bones to strengthen them, and through physical therapy and medical devices to improve mobility.
Trisomy 9 can be detected prenatally with chorionic villus sampling and cordocentesis, and can be suggested by obstetric ultrasonography.
Because trisomy 9 may appear with mosaicism, it is suggested that doctors take samples from multiple tissues when karyotyping for diagnosis.
Pre-implantation genetic diagnosis (PGD or PIGD) is a technique used to identify genetically normal embryos and is useful for couples who have a family history of genetic disorders. This is an option for people choosing to procreate through IVF. PGD is considered difficult due to it being both time consuming and having success rates only comparable to routine IVF.
Boomerang dysplasia is a lethal form of osteochondrodysplasia known for a characteristic congenital feature in which bones of the arms and legs are malformed into the shape of a boomerang. Death usually occurs in early infancy due to complications arising from overwhelming systemic bone malformations.
Osteochondrodysplasias are skeletal disorders that cause malformations of both bone and cartilage.
Platyspondylic lethal skeletal dysplasia, Torrance type is a severe disorder of bone growth. People with this condition have very short arms and legs, a small chest with short ribs, underdeveloped pelvic bones, and unusually short fingers and toes (brachydactyly). This disorder is also characterized by flattened spinal bones (platyspondyly) and abnormal curvature of the spine (lordosis).
As a result of these serious skeletal problems, many infants with platyspondylic lethal skeletal dysplasia, Torrance type are born prematurely, are stillborn, or die shortly after birth from respiratory failure. A few affected people with milder signs and symptoms have lived into adulthood, however.
This condition is one of a spectrum of skeletal disorders caused by mutations in the "COL2A1" gene. This gene provides instructions for making a protein that forms type II collagen. This type of collagen is found mostly in cartilage and in the clear gel that fills the eyeball (the vitreous). It is essential for the normal development of bones and other tissues that form the body's supportive framework (connective tissues).
Mutations in the "COL2A1" gene interfere with the assembly of type II collagen molecules, resulting in a reduced amount of this type of collagen in the body. Instead of forming collagen molecules, the abnormal "COL2A1" protein builds up in cartilage cells (chondrocytes). These changes disrupt the normal development of bones and other connective tissues, leading to the skeletal abnormalities characteristic of platyspondylic lethal skeletal dysplasia, Torrance type.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In some cases, an affected person inherits the mutation from one affected parent. Other cases may result from new mutations in the gene. These cases occur in people with no history of the disorder in their family.
Blastomere biopsy is a technique in which blastomeres are removed from the zona pellucida. It is commonly used to detect aneuploidy. Genetic analysis is conducted once the procedure is complete. Additional studies are needed to assess the risk associated with the procedure.
"Osteosclerosis", an elevation in bone density, is normally detected on an X-ray as an area of whiteness, and is where the bone density has significantly increased. Localized osteosclerosis can be caused by injuries that compress the bone, by osteoarthritis, and osteoma.
Pacman dysplasia (alternatively known as epiphyseal stippling with osteoclastic hyperplasia) is a lethal autosomal recessive skeletal dysplasia. The dysplasia is present during fetal development.
One Finnish study which followed 25 cases from 18 families found that half the infants died within 3 days of birth and the other half died before 4 months of age.
Raine syndrome (RNS), also called osteosclerotic bone dysplasia, is a rare autosomal recessive congenital disorder characterized by craniofacial anomalies including microcephaly, noticeably low set ears, osteosclerosis, a cleft palate, gum hyperplasia, a hypoplastic nose, and eye proptosis. It is considered to be a lethal disease, and usually leads to death within a few hours of birth. However, a recent report describes two studies in which children with Raine Syndrome have lived to 8 and 11 years old, so it is currently proposed that there is a milder expression that the phenotype can take (Simpson 2009).
It was first characterized in 1989 in a report that was published on an infant that had been born with an unknown syndrome, that later came to be called Raine Syndrome.
The current research describes Raine Syndrome as a neonatal osteosclerotic bone dysplasia, indicated by its osteosclerotic symptoms that are seen in those suffering from the disease. It has been found that a mutation in the gene FAM20C is the cause of the Raine Syndrome phenotype. This microdeletion mutation leads to an unusual chromosome 7 arrangement. The milder phenotypes of Raine Syndrome, such as those described in Simpson’s 2007 report, suggest that Raine Syndrome resulting from missense mutations may not be as lethal as the other described mutations (OMIM). This is supported by findings from Fradin et al. (2011), who reported on children with missense mutations to FAM20C and lived to ages 1 and 4 years, relatively much longer than the life spans of the previously reported children. Simpson et al.’s (2007) report states that to date, effected individuals have had chromosome 7 uniparental isodisomy and a 7p telomeric microdeletion. They had abnormal chromosome 7 arrangements, with microdeletions of their D7S2477 and D7S1484 markers (Simpson 2007).
Raine Syndrome appears to be an autosomal recessive disease. There are reports of recurrence in children born of the same parents, and an increased occurrence in children of closely related, genetically similar parents. Individuals with Raine Syndrome were either homozygous or compound heterozygous for the mutation of FAM20C. Also observed have been nonsynonomous mutation and splice-site changes (Simpson et al. 2007).
FAM20C, located on chromosome 7p22.3, is an important molecule in bone development. Studies in mice have demonstrated its importance in the mineralization of bones in teeth in early development (OMIM, Simpson et al. 2007, Wang et al. 2010). FAM20C stands for “family with sequence similarity 20, member C.” It is also commonly referred to as DMP-4. It is a Golgi-enriched fraction casein kinase and an extracellular serine/threonine protein kinase. It is 107,743 bases long, with 10 exons and 584 amino acids (Weizmann Institute of Science).
Currently, there is no cure for laminopathies and treatment is largely symptomatic and supportive. Physical therapy and/or corrective orthopedic surgery may be helpful for patients with muscular dystrophies. Cardiac problems that occur with some laminopathies may require a pacemaker. Treatment for neuropathies may include medication for seizures and spasticity.
The recent progress in uncovering the molecular mechanisms of toxic progerin formation in laminopathies leading to premature aging has opened up the potential for the development of targeted treatment. The farnesylation of prelamin A and its pathological form progerin is carried out by the enzyme farnesyl transferase. Farnesyl transferase inhibitors (FTIs) can be used effectively to reduce symptoms in two mouse model systems for progeria and to revert the abnormal nuclear morphology in progeroid cell cultures. Two oral FTIs, lonafarnib and tipifarnib, are already in use as anti-tumor medication in humans and may become avenues of treatment for children suffering from laminopathic progeria. Nitrogen-containing bisphosphate drugs used in the treatment of osteoporosis reduce farnesyldiphosphate production and thus prelamin A farnesylation. Testing of these drugs may prove them to be useful in treating progeria as well. The use of antisense oligonucleotides to inhibit progerin synthesis in affected cells is another avenue of current research into the development of anti-progerin drugs.
Majewski's polydactyly syndrome, also known as polydactyly with neonatal chondrodystrophy type I, short rib-polydactyly syndrome type II, and short rib-polydactyly syndrome, is a lethal form of neonatal dwarfism characterized by osteochondrodysplasia (skeletal abnormalities in the development of bone and cartilage) with a narrow thorax, polysyndactyly, disproportionately short tibiae, thorax dysplasia, hypoplastic lungs and respiratory insufficiency. Associated anomalies include protruding abdomen, brachydactyly, peculiar faces, hypoplastic epiglottis, cardiovascular defects, renal cysts, and also genital anomalies. Death occurs before or at birth.
The disease is inherited in an autosomal recessive pattern.
It was characterized in 1971.
Melnick–Needles syndrome (MNS), also known as Melnick–Needles osteodysplasty, is an extremely rare congenital disorder that affects primarily bone development. Patients with Melnick–Needles syndrome have typical faces (exophthalmos, full cheeks, micrognathia and malalignment of teeth), flaring of the metaphyses of long bones, s-like curvature of bones of legs, irregular constrictions in the ribs, and sclerosis of base of skull.
In males, the disorder is nearly always lethal in infancy. Lifespan of female patients might not be affected.
Melnick–Needles syndrome is associated with mutations in the "FLNA" gene and is inherited in an X-linked dominant manner. As with many genetic disorders, there is no known cure to MNS.
The disorder was first described by John C. Melnick and Carl F. Needles in 1966 in two multi-generational families.
Relationships between the disease and perlecan deficiency have been studied.