Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In terms of diagnosis of HNPP measuring nerve conduction velocity may give an indication of the presence of the disease.Other methods via which to ascertain the diagnosis of hereditary neuropathy with liability to pressure palsy are:
- Family history
- Genetic test
- Physical exam(lack of ankle reflex)
Electrophysiologic testing is an essential part of the evaluation of Anterior interosseous nerve syndromes. Nerve conduction studies may be normal or show pronator quadratus latency.
Electromyography (EMG) is generally most useful and will reveal abnormalities in the flexor pollicis longus, flexor digitorum profundus I and II and pronator quadratus muscles.
The role or MRI and ultrasound imaging in the diagnosis of Kiloh-Nevin syndrome is unclear.
If asked to make the "OK" sign, patients will make a triangle sign instead.
This 'Pinch-Test' exposes the weakness of the Flexor pollicis longus muscle and the flexor digitorum profundus I leading to weakness of the flexion of the distal phalanges of the thumb and index finger. This results in impairment of the pincer movement and the patient will have difficulty picking up a small item, such as a coin, from a flat surface.
Radiculopathy is a diagnosis commonly made by physicians in primary care specialities, chiropractic, orthopedics, physiatry, and neurology. The diagnosis may be suggested by symptoms of pain, numbness, and weakness in a pattern consistent with the distribution of a particular nerve root. Neck pain or back pain may also be present. Physical examination may reveal motor and sensory deficits in the distribution of a nerve root. In the case of cervical radiculopathy, Spurling's test may elicit or reproduce symptoms radiating down the arm. In the case of lumbosacral radiculopathy, a Straight leg raise maneuver may exacerbate radiculopathic symptoms. Deep tendon reflexes (also known as a Stretch reflex) may be diminished or absent in areas innervated by a particular nerve root.
For further workup, the American College of Radiology recommends that projectional radiography is the most appropriate initial study in all patients with chronic neck pain. Two additional diagnostic tests that may be of use are magnetic resonance imaging and electrodiagnostic testing. Magnetic resonance imaging (MRI) of the portion of the spine where radiculopathy is suspected may reveal evidence of degenerative change, arthritic disease, or another explanatory lesion responsible for the patient's symptoms. Electrodiagnostic testing, consisting of NCS (Nerve conduction study) and EMG (Electromyography), is also a powerful diagnostic tool that may show nerve root injury in suspected areas. On nerve conduction studies, the pattern of diminished Compound muscle action potential and normal sensory nerve action potential may be seen given that the lesion is proximal to the Posterior root ganglion. Needle EMG is the more sensitive portion of the test, and may reveal active denervation in the distribution of the involved nerve root, and neurogenic-appearing voluntary motor units in more chronic radiculopathies. Given the key role of electrodiagnostic testing in the diagnosis of acute and chronic radiculopathies, the American Association of Neuromuscular & Electrodiagnostic Medicine has issued evidence-based practice guidelines, for the diagnosis of both cervical and lumbosacral radiculopathies. The American Association of Neuromuscular & Electrodiagnostic Medicine has also participated in the Choosing Wisely Campaign and several of their recommendations relate to what tests are unnecessary for neck and back pain.
The symptoms and signs depend on which nerve is affected, where along its length the nerve is affected, and how severely the nerve is affected. Positive sensory symptoms are usually the earliest to occur, particularly tingling and neuropathic pain, followed or accompanied by reduced sensation or complete numbness. Muscle weakness is usually noticed later, and is often associated with muscle atrophy.
A compression neuropathy can usually be diagnosed confidently on the basis of the symptoms and signs alone. However, nerve conduction studies are helpful in confirming the diagnosis, quantifying the severity, and ruling out involvement of other nerves (suggesting a mononeuritis multiplex or polyneuropathy). A scan is not usually necessary, but may be helpful if a tumour or other local compressive lesion is suspected.Nerve injury, as a mononeuropathy, may cause similar symptoms to compression neuropathy. This may occasionally cause diagnostic confusion, particularly if the patient does not remember the injury and there are no obvious physical signs to suggest it.The symptoms and signs of each particular syndrome are discussed on the relevant pages, listed below.
The distinct innervation of the hand usually enables diagnosis of an ulnar nerve impingement by symptoms alone. Ulnar nerve damage that causes paralysis to these muscles will result in a characteristic ulnar claw position of the hand at rest. Clinical tests such as the card test for Froment's sign, can be easily performed for assessment of ulnar nerve. However, a complete diagnosis should identify the source of the impingement, and radiographic imaging may be necessary to determine or rule-out an underlying cause.
Imaging studies, such as ultrasound or MRI, may reveal anatomic abnormalities or masses responsible for the impingement. Additionally, imaging may show secondary signs of nerve damage that further confirm the diagnosis of impingement. Signs of nerve damage include flattening of the nerve, swelling of the nerve proximal to site of injury, abnormal appearance of nerve, or characteristic changes to the muscles innervated by the nerve.
Bernese periacetabular osteotomy resulted in major nerve deficits in the sciatic or femoral nerves in 2.1% of 1760 patients, of whom approximately half experienced complete recovery within a mean of 5.5 months.
Sciatic nerve exploration can be done by endoscopy in a minimally invasive procedure to assess lesions of the nerve. Endoscopic treatment for sciatic nerve entrapment has been investigated in deep gluteal syndrome; "Patients were treated with sciatic nerve decompression by resection of fibrovascular scar bands, piriformis tendon release, obturator internus, or quadratus femoris or by hamstring tendon scarring."
When an underlying medical condition is causing the neuropathy, treatment should first be directed at this condition. For example, if weight gain is the underlying cause, then a weight loss program is the most appropriate treatment. Compression neuropathy occurring in pregnancy often resolves after delivery, so no specific treatment is usually required. Some compression neuropathies are amenable to surgery: carpal tunnel syndrome and cubital tunnel syndrome are two common examples. Whether or not it is appropriate to offer surgery in any particular case depends on the severity of the symptoms, the risks of the proposed operation, and the prognosis if untreated. After surgery, the symptoms may resolve completely, but if the compression was sufficiently severe or prolonged then the nerve may not recover fully and some symptoms may persist. Drug treatment may be useful for an underlying condition (including peripheral oedema), or for ameliorating neuropathic pain.
Signals from the sciatic nerve and it branches can be blocked, in order to interrupted transmission of pain signal from the innervation area, by performing a regional nerve blockade called a sciatic nerve block.
Surgical decompression can give excellent results if the clinical picture and the EMG suggest a compression neuropathy.
In brachial plexus neuritis, conservative management may be more appropriate.
Spontaneous recovery has been reported, but is said to be delayed and incomplete.
There is a role for physiotherapy and this should be directed specifically towards the pattern of pain and symptoms. Soft tissue massage, stretches and exercises to directly mobilise the nerve tissue may be used.
Treatment is directed at the pathology causing the paralysis. If it is because of trauma such as a gunshot or knife wound, there may be other life-threatening conditions such as bleeding or major organ damage which should be dealt with on an emergent basis. If the syndrome is caused by a spinal fracture, this should be identified and treated appropriately. Although steroids may be used to decrease cord swelling and inflammation, the usual therapy for spinal cord injury is expectant.
People who suffer from neurotmesis often face a poor prognosis. They will more than likely never regain full functionality of the affected nerve, but surgical techniques do give people a better chance at regaining some function. Current research is focused on new ways to regenerate nerves and advance surgical techniques.
People with diabetes mellitus are at higher risk for any kind of peripheral neuropathy, including ulnar nerve entrapments.
Cubital tunnel syndrome is more common in people who spend long periods of time with their elbows bent, such as when holding a telephone to the head. Flexing the elbow while the arm is pressed against a hard surface, such as leaning against the edge of a table, is a significant risk factor. The use of vibrating tools at work or other causes of repetitive activities increase the risk, including throwing a baseball.
Damage to or deformity of the elbow joint increases the risk of cubital tunnel syndrome. Additionally, people who have other nerve entrapments elsewhere in the arm and shoulder are at higher risk for ulnar nerve entrapment. There is some evidence that soft tissue compression of the nerve pathway in the shoulder by a bra strap over many years can cause symptoms of ulnar neuropathy, especially in very large-breasted women.
The diagnosis may be confirmed by an EMG examination in 5 to 7 days. The evidence of denervation will be evident. If there is no nerve conduction 72 hours after the injury, then avulsion is most likely..
The most advanced diagnostic method is MR imaging of the brachial plexus using a high Tesla MRI scanner like 1.5 T or more. MR helps aid in the assessment of the injuries in specific context of site, extent and the nerve roots involved. In addition, assessment of the cervical cord and post traumatic changes in soft tissues may also be visualised.
Initial screening for CIP/CIM may be performed using an objective scoring system for muscle strength. The Medical Research Council (MRC) score is one such tool, and sometimes used to help identify CIP/CIM patients in research studies. The MRC score involves assessing strength in 3 muscle groups in the right and left sides of both the upper and lower extremities. Each muscle tested is given a score of 0-5, giving a total possible score of 60. An MRC score less than 48 is suggestive of CIP/CIM. However, the tool requires that patients be awake and cooperative, which is often not the case. Also, the screening tool is non-specific, because it does not identify the cause a person's muscle weakness.
Once weakness is detected, the evaluation of muscle strength should be repeated several times. If the weakness persists, then a muscle biopsy, a nerve conduction study (electrophysiological studies), or both should be performed.
CMT can be diagnosed through symptoms, through measurement of the speed of nerve impulses (nerve conduction studies), through biopsy of the nerve, and through DNA testing. DNA testing can give a definitive diagnosis, but not all the genetic markers for CMT are known. CMT is first noticed when someone develops lower leg weakness, such as foot drop; or foot deformities, including hammertoes and high arches. But signs alone do not lead to diagnosis. Patients must be referred to a physician specialising in neurology or rehabilitation medicine. To see signs of muscle weakness, the neurologist asks patients to walk on their heels or to move part of their leg against an opposing force. To identify sensory loss, the neurologist tests for deep tendon reflexes, such as the knee jerk, which are reduced or absent in CMT. The doctor also asks about family history, because CMT is hereditary. The lack of family history does not rule out CMT, but helps rule out other causes of neuropathy, such as diabetes or exposure to certain chemicals or drugs.
In 2010, CMT was one of the first diseases where the genetic cause of a particular patient's disease was precisely determined by sequencing the whole genome of an affected individual. This was done by the scientists employed by the Charcot Marie Tooth Association (CMTA) Two mutations were identified in a gene, SH3TC2, known to cause CMT. Researchers then compared the affected patient's genome to the genomes of the patient's mother, father, and seven siblings with and without the disease. The mother and father each had one normal and one mutant copy of this gene, and had mild or no symptoms. The offspring that inherited two mutant genes presented fully with the disease.
There is no current treatment, however management of hereditary neuropathy with liability to pressure palsy can be done via:
- Occupational therapist
- Ankle/foot orthosis
- Wrist splint (medicine)
- Avoid repetitive movements
While conservative approaches for rehabilitation are ideal, some patients will not improve and surgery is still an option. Patients with large cervical disk bulges may be recommended for surgery, however most often conservative management will help the herniation regress naturally. Procedures such as foraminotomy, laminotomy, or discectomy may be considered by neurosurgeons and orthopedic surgeons.
With Seddon's classification of nerve injuries, it is often tough to identify whether a particular nerve injury is neurotmesis, or axonotmesis, which has damage to the nerve fibres but preservation of the nerve trunk. Due to the damage involved in both of these conditions they will both show paralysis of muscles that are supplied by nerves below the site of the lesion, and will have sensory deficits in accordance with the individual nerves that are damaged. The only way to know for sure if a nerve injury is in fact neurotmesis is to allow for the normal progression of nerve regeneration to take place (nerves regenerate at a rate of approximately 2–4 mm/day proximal to the lesion), and if, after that time, there is still profound muscle paralysis and degeneration in these areas, then it is likely to have been a neurotmesis injury.
Neurotmesis is diagnosed through clinical evaluation of symptoms, physical evaluation, and other diagnostic studies. Patients often undergo a series of muscle strength tests, sensory exam which includes feeling the sensation of light touch, pinprick, vibration, and others. Other tests involved with diagnosis of nerve injury are electromyography (EMG) and nerve conduction studies (NCS). These help to distinguish upper from lower motor neuron disorder as well as diagnose primary muscle disease.
The severity of symptoms vary widely even for the same type of CMT. There have been cases of monozygotic twins with varying levels of disease severity, showing that identical genotypes are associated with different levels of severity (see penetrance). Some patients are able to live a normal life and are almost or entirely asymptomatic. A 2007 review stated that "Life expectancy is not known to be altered in the majority of cases".
The serum creatine phosphokinase (CPK) can be mildly elevated. While the CPK is often a good marker for damage to muscle tissue, it is not a helpful marker in CIP/CIM, because CIP/CIM is a gradual process and does not usually involve significant muscle cell death (necrosis). Also, even if necrosis is present, it may be brief and is therefore easily missed. If a lumbar puncture (spinal tap) is performed, the protein level in the cerebral spinal fluid would be normal.
In cases of neurapraxia, the function of the nerves are temporarily impaired. However, the prognosis for recovery from neurapraxia is efficient and quick. Recovery begins within two to three weeks after the injury occurs, and it is complete within six to eight weeks. There are instances when function is not completely restored until four months after the instance of injury. The recovery period of neurapraxia is not an entirely ordered process, but the recovery is always complete and fast.
Magnetic resonance imaging (MRI) is the imaging of choice in spinal cord lesions.
Brown-Séquard syndrome is an incomplete spinal cord lesion characterized by findings on clinical examination which reflect hemisection of the spinal cord (cutting the spinal cord in half on one or the other side). It is diagnosed by finding motor (muscle) paralysis on the same (ipsilateral) side as the lesion and deficits in pain and temperature sensation on the opposite (contralateral) side. This is called ipsilateral hemiplegia and contralateral pain and temperature sensation deficits. The loss of sensation on the opposite side of the lesion is because the nerve fibers of the spinothalamic tract (which carry information about pain and temperature) crossover once they meet the spinal cord from the peripheries.
No specific work up is defined. Stenosing tenosynovitis is a clinical diagnosis. However, if rheumatoid arthritis is suspected, laboratory evaluation of is granted (e.g. rheumatoid factor). Imaging studies are not needed to diagnose the condition. However, they can be valuable adjuvants to achieve a diagnosis. An ultrasound or MRI ( the most reliable study) can demonstrate increased thickness of the involved tendons. Thickening and hyper-vascularization of the pulley are the hallmarks of trigger fingers on sonography.
One way to prevent this injury from occurring is to be informed and educated about the risks involved in hurting your wrist and hand. If patients do suffer from median nerve palsy, occupational therapy or wearing a splint can help reduce the pain and further damage. Wearing a dynamic splint, which pulls the thumb into opposition, will help prevent an excess in deformity. This splint can also assist in function and help the fingers flex towards the thumb. Stretching and the use of C-splints can also assist in prevention of further damage and deformity. These two methods can help in the degree of movement the thumb can have. While it is impossible to prevent trauma to your arms and wrist, patients can reduce the amount of compression by maintaining proper form during repetitive activities. Furthermore, strengthening and increasing flexibility reduces the risk of nerve compression.
The site and type of brachial plexus injury determine the prognosis. Avulsion and rupture injuries require timely surgical intervention for any chance of recovery. For milder injuries involving buildup of scar tissue and for neurapraxia, the potential for improvement varies, but there is a fair prognosis for spontaneous recovery, with a 90–100% return of function.