Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Congenital heart defects are now diagnosed with echocardiography, which is quick, involves no radiation, is very specific, and can be done prenatally.
Before more sophisticated techniques became available, chest x-ray was the definitive method of diagnosis. The abnormal "coeur-en-sabot" (boot-like) appearance of a heart with tetralogy of Fallot is classically visible via chest x-ray, although most infants with tetralogy may not show this finding. Absence of interstitial lung markings secondary to pulmonary oligaemia are another classic finding in tetralogy, as is the pulmonary bay sign.
Tet spells may be treated with beta-blockers such as propranolol, but acute episodes require rapid intervention with morphine or intranasal fentanyl to reduce ventilatory drive, a vasopressor such as phenylephrine, or norepinephrine to increase systemic vascular resistance, and IV fluids for volume expansion.
Oxygen (100%) may be effective in treating spells because it is a potent pulmonary vasodilator and systemic vasoconstrictor. This allows more blood flow to the lungs by decreasing shunting of deoxygenated blood from the right to left ventricle through the VSD. There are also simple procedures such as squatting and the knee chest position which increase systemic vascular resistance and decrease right-to-left shunting of deoxygenated blood into the systemic circulation.
Previously, diagnosis was usually done through autopsy. Advances in imaging technologies allow for early detection and thus ample treatment and monitoring of the affected patient. A short-axis ultrasound of the aortic valve allows for the best view of the aortic valve, and gives a clear indication of the adduction pattern of the aortic valves.
If an “X” shape is seen, then the patient can be diagnosed with having a quadricuspid aortic valve. A transthoracic echocardiogram (TTE) indicates if there is an aortic regurgitation, but a 3-D transesophageal echocardiogram can give a better view of the aortic valve.
Multidetector coronary CT angiography has been indicated as a single competent diagnostic imaging tool capable of delineating valvular anatomy, severity of regurgitation, and high risk coronary problems. The typical method of treatment is through surgery such as aortic valve reconstruction surgery (AVRS) and aortic valve replacement, usually with a synthetic valve.
Treatment is with neonatal surgical repair, with the objective of restoring a normal pattern of blood flow. The surgery is open heart, and the patient will be placed on cardiopulmonary bypass to allow the surgeon to work on a still heart. The heart is opened and the ventricular septal defect is closed with a patch. The pulmonary arteries are then detached from the common artery (truncus arteriosus) and connected to the right ventricle using a tube (a conduit or tunnel). The common artery, now separated from the pulmonary circulation, functions as the aorta with the truncal valve operating as the aortic valve. Most babies survive this surgical repair, but may require further surgery as they grow up. For example, the conduit does not grow with the child and may need to be replaced as the child grows. Furthermore, the truncal valve is often abnormal and may require future surgery to improve its function.
There have been cases where the condition has been diagnosed at birth and surgical intervention is an option. A number of these cases have survived well into adulthood.
Persistent truncus arteriosus is a rare cardiac abnormality that has a prevalence of less than 1%.
Quadricuspid aortic valves are very rare cardiac valvular anomalies with a prevalence of 0.013% to 0.043% of cardiac cases and a prevalence of 1 in 6000 patients that undertake aortic valve surgery. There is a slight male predominance in all of the cases, and the mean age is 50.7.
Left to right shunting heart defects include:
- Ventricular septal defect (VSD) (30% of all congenital heart defects)
- Atrial septal defect (ASD)
- Atrioventricular septal defect (AVSD)
- Patent ductus arteriosus (PDA)
- Previously, Patent ductus arteriosus (PDA) was listed as acyanotic but in actuality it can be cyanotic due to pulmonary hypertension resulting from the high pressure aorta pumping blood into the pulmonary trunk, which then results in damage to the lungs which can then result in pulmonary hypertension as well as shunting of blood back to the right ventricle. This consequently results in less oxygenation of blood due to alveolar damage as well as oxygenated blood shunting back to the right side of the heart, not allowing the oxygenated blood to pass through the pulmonary vein and back to the left atrium.
- (Edit - this is called Eisenmenger's syndrome and can occur with Atrial septal defect and ventricular septal defect as well (actually more common in ASD and VSD) therefore PDA can still be listed as acyanotic as, acutely, it is)
Others:
- levo-Transposition of the great arteries (l-TGA)
Acyanotic heart defects without shunting include:
- Pulmonary stenosis (a narrowing of the pulmonary valve)
- Aortic stenosis
- Coarctation of the aorta
Heart septal defect refers to a congenital heart defect of one of the septa of the heart.
- Atrial septal defect
- Atrioventricular septal defect
- Ventricular septal defect
Although aortopulmonary septal defects are defects of the aorticopulmonary septum, which is not technically part of the heart, they are sometimes grouped with the heart septal defects.
An acyanotic heart defect, also known as non-cyanotic heart defect, is a class of congenital heart defects. In these, blood is shunted (flows) from the left side of the heart to the right side of the heart due to a structural defect (hole) in the interventricular septum. People often retain normal levels of oxyhemoglobin saturation in systemic circulation.
This term is outdated, because a person with an acyanotic heart defect may show cyanosis (turn blue due to insufficient oxygen in the blood).
There are numerous types, differentiated by the extent of the defect. These types are:
- Type I: simple defects leading to communication between the ascending aorta and pulmonic trunk
- Type II: defects that extend to the origin of the right pulmonary artery
- Type III: anomalous origin of the right pulmonary artery from the ascending aorta
It is also classified as simple or complex. Simple defects are those that do not require surgical repair, occur with no other defects, or those that require minor stright-forward repair (ductus arteriosus, atrial septal defect). Complex defects are those that occur with other anatomical anomalies or require non-standard repair.
Aortopulmonary septal defect is a rare congenital heart disorder accounting for only 0.1-0.3% of congenital heart defects worldwide. It is characterized by a communication between the aortic and pulmonary arteries, with preservation of two normal semilunar valves. It is the result of an incomplete separation of the aorticopulmonary trunk that normally occurs in early fetal development with formation of the spiral septum. Aortopulmonary septal defects occur in isolation in about half of cases, the remainder are associated with more complex heart abnormalities.
The U.S. Preventive Services Task Force (USPSTF) recommends against screening for carotid artery stenosis in those without symptoms.
Carotid stenosis is usually diagnosed by color flow duplex ultrasound scan of the carotid arteries in the neck. This involves no radiation, no needles and no contrast agents that may cause allergic reactions. This test has moderate sensitivity and specificity, and yields many false-positive results.
Typically duplex ultrasound scan is the only investigation required for decision making in carotid stenosis as it is widely available and rapidly performed. However, further imaging can be required if the stenosis is not near the bifurcation of the carotid artery.
One of several different imaging modalities, such as angiogram, computed tomography angiogram (CTA) or magnetic resonance imaging angiogram (MRA) may be useful. Each imaging modality has its advantages and disadvantages - Magnetic resonance angiography and CT angiography with contrast is contraindicated in patients with renal insufficiency, catheter angioigraphy has a 0.5% to 1.0% risk of stroke, MI, arterial injury or retoperitoneal bleeding. The investigation chosen will depend on the clinical question and the imaging expertise, experience and equipment available.
a combination of various vascular malformations. They are 'complex' because they involve a combination of two different types of vessels.
- CVM: capillary venous malformation
- CLM: capillary lymphatic malformation
- LVM: lymphatic venous malformation
- CLVM: capillary lymphatic venous malformation. CLVM is associated with Klippel-Trenaunay syndrome
- AVM-LM: Arteriovenous malformation- lymphatic malformation
- CM-AVM: capillary malformation- arteriovenous malformation
All fast-flow malformations are malformations involving arteries. They constitute about 14% of all vascular malformations.
- Arterial malformation
- Arteriovenous fistula (AVF) : a lesion with a direct communication via fistulae between an artery and a vein.
- Arteriovenous malformation : a lesion with a direct connection between an artery and a vein, without an intervening capillary bed, but with an interposed nidus of dysplastic vascular channels in between.
Three tests are useful in confirming the presence and severity of Horner syndrome:
- Cocaine drop test: Cocaine eyedrops block the reuptake of post-ganglionic norepinephrine resulting in the dilation of a normal pupil from retention of norepinephrine in the synapse. However, in Horner's syndrome the lack of norepinephrine in the synaptic cleft causes mydriatic failure. A more recently introduced approach that is more dependable and obviates the difficulties in obtaining cocaine is to apply the alpha-agonist apraclonidine to both eyes and observe the increased mydriatic effect (due to hypersensitivity) on the affected side of Horner syndrome (the opposite effect to what the cocaine test would produce in the presence of Horner's).
- Paredrine test: This test helps to localize the cause of the miosis. If the third order neuron (the last of three neurons in the pathway which ultimately discharges norepinephrine into the synaptic cleft) is intact, then the amphetamine causes neurotransmitter vesicle release, thus releasing norepinephrine into the synaptic cleft and resulting in robust mydriasis of the affected pupil. If the lesion itself is of the third order neuron, then the amphetamine will have no effect and the pupil remains constricted. There is no pharmacological test to differentiate between a first and second order neuron lesion.
- Dilation lag test
It is important to distinguish the ptosis caused by Horner's syndrome from the ptosis caused by a lesion to the oculomotor nerve. In the former, the ptosis occurs with a constricted pupil (due to a loss of sympathetics to the eye), whereas in the latter, the ptosis occurs with a dilated pupil (due to a loss of innervation to the sphincter pupillae). In a clinical setting, these two ptoses are fairly easy to distinguish. In addition to the blown pupil in a CNIII (oculomotor nerve) lesion, this ptosis is much more severe, occasionally occluding the whole eye. The ptosis of Horner syndrome can be quite mild or barely noticeable (partial ptosis).
When anisocoria occurs and the examiner is unsure whether the abnormal pupil is the constricted or dilated one, if a one-sided ptosis is present then the abnormally sized pupil can be presumed to be on the side of the ptosis.
The most common causes in young children are birth trauma and a type of cancer called neuroblastoma. The cause of about a third of cases in children is unknown.
Some patients have a few or no histopathologic abnormalities. Histological examination of a biopsy may show an increase in the number and size of capillaries and veins (rarely lymphatics), dilated capillaries located in the deeper dermis, and hyperplasia and swollen endothelial cells with occasional dilated veins and venous lakes.
The prognosis is favorable in most patients with an isolated cutaneous abnormality. In the majority of cases, both the vivid red marking and the difference in circumference of the extremities regress spontaneously during the first year of life. It is theorized that this may be due to the normal maturation process, with thickening of the epidermis and dermis. Improvements for some patients can continue for up to 10 years, while in other cases, the marbled skin may persist for the patient's lifetime.
One study reported an improvement in lesions in 46% of patients within 3 years. If CMTC persists into adulthood, it can result in complaints due to paresthesia, increased sensitivity to cold and pain, and the formation of ulcers.
Few reports included long-term follow up of CMTC into adolescence and adulthood. While about 50% of patients seem to show definite improvement in the reticular vascular pattern, the exact incidence and cause of persistent cases are unknown.
This not known with certainty but is estimated to be about one per million. It appears to be more common in females than males.
Medical diagnosis of CGL can be made after observing the physical symptoms of the disease: lipoatrophy (loss of fat tissues) affecting the trunk, limbs, and face; hepatomegaly; acromegaly; insulin resistance; and high serum levels of triglycerides. Genetic testing can also confirm the disease, as mutations in the AGPAT2 gene is indicative of CGL1, a mutation in the BSCL2 gene is indicative of CGL2, and mutations in the CAV1 and PTRF genes are indicative of CGL3 and CGL4 respectively. Physical diagnosis of CGL is easier, as CGL patients are recognizable from birth, due to their extreme muscular appearance, which is caused by the absence of subcutaneous fat.
CGL3 patients have serum creatine kinase concentrations much higher than normal (2.5 to 10 times the normal limit). This can be used to diagnose type 3 patients and differentiate them from CGL 1 and 2 without mapping their genes. Additionally, CGL3 patients have low muscle tone when compared with other CGL patients.
Nabers probe is used to check for furcation involvement clinically. Recently, cone beam computerised technology (CBCT) has also be used to detect furcation. Periapical and interproximal intraoral radiographs can help diagnosing and locating the furcation. The location and severity of furcation should be recorded in patient’s notes.
Only multirooted teeth have furcation. Therefore, upper first premolar, maxillary and mandibular molars may be involved.
Upper premolars have one buccal and one palatal root. Furcation involvement should be checked from the mesial and the distal aspects of the tooth.
Maxillary molars have three roots, a mesio-buccal root, disto-buccal root and a palatal root. Thus, check for furcation from buccal, mesio-palatal and disto-palatal aspects.
Mandibular molars have one mesial and one distal root, and so, check for involvement from buccal and lingual aspects.
There are several ways to determine if a child has chondrodystrophy, including parent testing and x-rays. If the fetus is suspected of having chondrodystrophy, the parents can be tested to find out if the fetus in fact does have the disease. It is not until the baby is born that a diagnosis can be declared. The diagnosis is declared with the help of several x-rays and charted bone growth patterns. Once the child is diagnosed the parents have to monitor the children because of several different factors. As the child gets older, hearing, eyesight and motor skills may be defective. Also, breathing (apnea) and weight problems (obesity) may occur. Structurally, scoliosis, bowed legs (genu varum), and arthritis may result.
An ossifying fibromyxoid tumour is a type of myxoma. It presents in the extremities more frequently than the trunk. It is derived from mesenchyme. Appearance in the head and neck is rare, but has been reported. Their malignancy has been characterized as "intermediate".
A dilated pore, also known as a dilated pore of Winer, is a cutaneous condition characterized by a solitary, prominent, open comedo on the face or upper trunk of an individual. They can occur on either young or elderly individuals. They are benign; however, they can be considered unsightly. The only curative method of removal is a punch excision, usually 1–3 mm. Lasers and other superficial means of removal have proven to be ineffective.