Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The most characteristic biochemical indicator of SLOS is an increased concentration of 7DHC (reduced cholesterol levels are also typical, but appear in other disorders as well). Thus, prenatally, SLOS is diagnosed upon finding an elevated 7DHC:total sterol ratio in fetal tissues, or increased levels of 7DHC in amniotic fluid. The 7DHC:total sterol ratio can be measured at 11–12 weeks of gestation by chorionic villus sampling, and elevated 7DHC in amniotic fluid can be measured by 13 weeks. Furthermore, if parental mutations are known, DNA testing of amniotic fluid or chorionic villus samples may be performed.
Amniocentesis (process of sampling amniotic fluid) and chorionic villus sampling cannot be performed until approximately 3 months into the pregnancy. Given that SLOS is a very severe syndrome, parents may want to choose to terminate their pregnancy if their fetus is affected. Amniocentesis and chorionic villus sampling leave very little time to make this decision (abortions become more difficult as the pregnancy advances), and can also pose severe risks to the mother and baby. Thus, there is a very large desire for noninvasive midgestation diagnostic tests. Examining the concentrations of sterols in maternal urine is one potential way to identify SLOS prenatally. During pregnancy, the fetus is solely responsible for synthesizing the cholesterol needed to produce estriol. A fetus with SLOS cannot produce cholesterol, and may use 7DHC or 8DHC as precursors for estriol instead. This creates 7- or 8-dehydrosteroids (such as 7-dehydroestriol), which may show up in the maternal urine. These are novel metabolites due to the presence of a normally reduced double bond at carbon 7 (caused by the inactivity of DHCR7), and may be used as indicators of SLOS. Other cholesterol derivatives which possess a double bond at the 7th or 8th position and are present in maternal urine may also be indicators of SLOS. 7- and 8-dehydropregnanetriols have been shown to be present in the urine of mothers with an affected fetus but not with an unaffected fetus, and thus are used in diagnosis. These pregnadienes originated in the fetus and traveled through the placenta before reaching the mother. Their excretion indicates that neither the placenta nor the maternal organs have necessary enzymes needed to reduce the double bond of these novel metabolites.
If SLOS goes undetected until after birth, diagnosis may be based on the characteristic physical features as well as finding increased plasma levels of 7DHC.
There are many different ways of detecting 7DHC levels in blood plasma, one way is using the Liebermann–Burchard (LB) reagent. This is a simple colorimetric assay developed with the intention of use for large scale screening. When treated with the LB reagent, SLOS samples turn pink immediately and gradually become blue; normal blood samples are initially colorless and develop a faint blue color. Although this method has limitations and is not used to give a definitive diagnosis, it has appeal in that it is a much faster method than using cell cultures.
Another way of detecting 7DHC is through gas chromatography, a technique used to separate and analyze compounds. Selected ion
monitoring gas chromatography/mass-spectrometry (SIM-GC/MS) is a very sensitive version of gas chromatography, and permits detection of even mild cases of SLOS. Other methods include time-of-flight mass spectrometry, particle-beam LC/MS, electrospray tandem MS, and ultraviolet absorbance, all of which may be used on either blood samples, amniotic fluid, or chorionic villus. Measuring levels of bile acids in patients urine, or studying DCHR7 activity in tissue culture are also common postnatal diagnostic techniques.
The clinical diagnosis is backed up by investigative findings. Citrulline level in blood is decreased. Mitochondrial studies or NARP mtDNA evaluation plays a role in genetic diagnosis which can also be done prenatally.
Blood lactate and pyruvate levels usually are elevated as a result of increased anaerobic metabolism and a decreased ratio of ATP:ADP. CSF analysis shows an elevated protein level, usually >100 mg/dl, as well as an elevated lactate level.
It is not necessary to biopsy an ocular muscle to demonstrate histopathologic abnormalities. Cross-section of muscle fibers stained with Gömöri trichrome stain is viewed using light microscopy. In muscle fibers containing high ratios of the mutated mitochondria, there is a higher concentration of mitochondria. This gives these fibers a darker red color, causing the overall appearance of the biopsy to be described as "ragged red fibers. Abnormalities may also be demonstrated in muscle biopsy samples using other histochemical studies such as mitochondrial enzyme stains, by electron microscopy, biochemical analyses of the muscle tissue (ie electron transport chain enzyme activities), and by analysis of muscle mitochondrial DNA. "
CCD may be detectable on prenatal ultrasound. After birth, signs in affected babies typically are abdominal distension, visible peristalsis, and watery stools persistent from birth that show chloride loss of more than 90 mmol/l.
An important feature in this diarrhea that helps in the diagnosis, is that it is the only type of diarrhea that causes metabolic alkalosis rather than metabolic acidosis.
The diagnosis of Nezelof syndrome will indicate a deficiency of T-cells, additionally in ascertaining the condition the following is done:
Infant mortality is high for patients diagnosed with early onset; mortality can occur within less than 2 months, while children diagnosed with late-onset syndrome seem to have higher rates of survival. Patients suffering from a complete lesion of mut0 have not only the poorest outcome of those suffering from methylaonyl-CoA mutase deficiency, but also of all individuals suffering from any form of methylmalonic acidemia.
The differential diagnosis for this condition consists of acquired immune deficiency syndrome and severe combined immunodeficiency syndrome
The severity and prognosis vary with the type of mutation involved.
A team of doctors in Australia have trial tested the drug rapamycin in the treatment of a patient said to have Proteus syndrome and have found it to be an effective remedy. However, the diagnosis of Proteus syndrome in this patient has been questioned by others.
The Proteus syndrome research team in the National Human Genome Research Institute at the United States National Institutes of Health have initiated a Phase 0 dose finding trial with the AKT1 inhibitor ARQ 092, which is being developed by the Arqule Corporation. In earlier tests on tissue and cell samples obtained from patients, ARQ 092 reduced phosphorylation of AKT and downstream targets of AKT in as little as two hours. The Phase 0 trial opened in November 2015 and recruited patients in a study titled "Dose Finding Trial of ARQ 092 in Children and Adults With Proteus Syndrome" This trial is based on in vitro data showing inhibition of AKT1 in cell lines from patients with Proteus syndrome.
The diagnosis of ML is based on clinical symptoms, a complete medical history, and certain laboratory tests.
Available treatments address the symptoms of CCD, not the underlying defect. Early diagnosis and aggressive salt replacement therapy result in normal growth and development, and generally good outcomes. Replacement of NaCl and KCl has been shown to be effective in children.
A potential treatment is butyrate.
Liver biopsy for microscopic analysis and enzyme assay is required for definitive diagnosis. Diagnosis may include linkage analysis in families with affected members and sequencing of the entire coding region of the GSY2 gene for mutations.
Several tests can be done to discover the dysfunction of methylmalonyl-CoA mutase. Ammonia test, blood count, CT scan, MRI scan, electrolyte levels, genetic testing, methylmalonic acid blood test, and blood plasma amino acid tests all can be conducted to determine deficiency.
There is no treatment for complete lesion of the mut0 gene, though several treatments can help those with slight genetic dysfunction. Liver and kidney transplants, and a low-protein diet all help regulate the effects of the diseases.
Serum glucose levels are measured to document the degree of hypoglycemia. Serum electrolytes calculate the anion gap to determine presence of metabolic acidosis; typically, patients with glycogen-storage disease type 0 (GSD-0) have an anion gap in the reference range and no acidosis. See the Anion Gap calculator.
Serum lipids (including triglyceride and total cholesterol) may be measured. In patients with glycogen-storage disease type 0, hyperlipidemia is absent or mild and proportional to the degree of fasting.
Urine (first voided specimen with dipstick test for ketones and reducing substances) may be analyzed. In patients with glycogen-storage disease type 0, urine ketones findings are positive, and urine-reducing substance findings are negative. However, urine-reducing substance findings are positive (fructosuria) in those with fructose 1-phosphate aldolase deficiency (fructose intolerance).
Serum lactate is in reference ranges in fasting patients with glycogen-storage disease type 0.
Liver function studies provide evidence of mild hepatocellular damage in patients with mild elevations of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels.Plasma amino-acid analysis shows plasma alanine levels as in reference ranges during a fast.
Treatments for Glycerol Kinase Deficiency are targeted to treat the symptoms because there are no permanent treatments for this disease. The main way to treat these symptoms is by using corticosteroids, glucose infusion, or mineralocorticoids. Corticosteroids are steroid hormones that are naturally produced in the adrenal glands. These hormones regulate stress responses, carbohydrate metabolism, blood electrolyte levels, as well as other uses. The mineralocorticoids, such as aldosterone control many electrolyte levels and allow the kidneys to retain sodium. Glucose infusion is coupled with insulin infusion to monitor blood glucose levels and keep them stable.
Due to the multitude of varying symptoms of this disease, there is no specific treatment that will cure this disease altogether. The symptoms can be treated with many different treatments and combinations of medicines to try to find the correct combination to offset the specific symptoms. Everyone with Glycerol Kinase Deficiency has varying degrees of symptoms and thereby requires different medicines to be used in combination to treat the symptoms; however, this disease is not curable and the symptoms can only be managed, not treated fully.
The term homocystinuria describes an increased excretion of the thiol amino acid homocysteine in urine (and incidentally, also an increased concentration in plasma). The source of this increase may be one of many metabolic factors, only one of which is CBS deficiency. Others include the re-methylation defects (cobalamin defects, methionine sythase deficiency, MTHFR) and vitamin deficiencies (cobalamin (vitamin B12) deficiency, folate (vitamin B9) deficiency, riboflavin deficiency (vitamin B2), pyridoxal phosphate deficiency (vitamin B6)). In light of this information, a combined approach to laboratory diagnosis is required to reach a differential diagnosis.
CBS deficiency may be diagnosed by routine metabolic biochemistry. In the first instance, plasma or urine amino acid analysis will frequently show an elevation of methionine and the presence of homocysteine. Many neonatal screening programs include methionine as a metabolite. The disorder may be distinguished from the re-methylation defects (e.g., MTHFR, methionine synthase deficiency and the cobalamin defects) in lieu of the elevated methionine concentration. Additionally, organic acid analysis or quantitative determination of methylmalonic acid should help to exclude cobalamin (vitamin B12) defects and vitamin B12 deficiency giving a differential diagnosis.
The laboratory analysis of homocysteine itself is complicated because most homocysteine (possibly above 85%) is bound to other thiol amino acids and proteins in the form of disulphides (e.g., cysteine in cystine-homocysteine, homocysteine in homocysteine-homocysteine) via disulfide bonds. Since as an equilibrium process the proportion of free homocystene is variable a true value of total homocysteine (free + bound) is useful for confirming diagnosis and particularly for monitoring of treatment efficacy. To this end it is prudent to perform total homocyst(e)ine analysis in which all disulphide bonds are subject to reduction prior to analysis, traditionally by HPLC after derivatisation with a fluorescent agent, thus giving a true reflection of the quantity of homocysteine in a plasma sample.
Though BLSII is an attractive candidate for gene therapy, bone marrow transplant is currently the only treatment.
Many sources classify Proteus syndrome to be a type of nevus syndrome. The lesions appear to be distributed in a mosaic manner. It has been confirmed that the disorder is an example of genetic mosaicism.
Nitric acid test and paper chromatography test are used in the detection of argemone oil.Paper chromatography test is the most sensitive test.
The life expectancy of patients with homocystinuria is reduced only if untreated. It is known that before the age of 30, almost one quarter of patients die as a result of thrombotic complications (e.g., heart attack).
The basic tests performed when an immunodeficiency is suspected should include a full blood count (including accurate lymphocyte and granulocyte counts) and immunoglobulin levels (the three most important types of antibodies: IgG, IgA and IgM).
Other tests are performed depending on the suspected disorder:
- Quantification of the different types of mononuclear cells in the blood (i.e. lymphocytes and monocytes): different groups of T lymphocytes (dependent on their cell surface markers, e.g. CD4+, CD8+, CD3+, TCRαβ and TCRγδ), groups of B lymphocytes (CD19, CD20, CD21 and Immunoglobulin), natural killer cells and monocytes (CD15+), as well as activation markers (HLA-DR, CD25, CD80 (B cells).
- Tests for T cell function: skin tests for delayed-type hypersensitivity, cell responses to mitogens and allogeneic cells, cytokine production by cells
- Tests for B cell function: antibodies to routine immunisations and commonly acquired infections, quantification of IgG subclasses
- Tests for phagocyte function: reduction of nitro blue tetrazolium chloride, assays of chemotaxis, bactericidal activity.
Due to the rarity of many primary immunodeficiencies, many of the above tests are highly specialised and tend to be performed in research laboratories.
Criteria for diagnosis were agreed in 1999. For instance, an antibody deficiency can be diagnosed in the presence of low immunoglobulins, recurrent infections and failure of the development of antibodies on exposure to antigens. The 1999 criteria also distinguish between "definitive", "probable" and "possible" in the diagnosis of primary immunodeficiency. "Definitive" diagnosis is made when it is likely that in 20 years, the patient has a >98% chance of the same diagnosis being made; this level of diagnosis is achievable with the detection of a genetic mutation or very specific circumstantial abnormalities. "Probable" diagnosis is made when no genetic diagnosis can be made, but the patient has all other characteristics of a particular disease; the chance of the same diagnosis being made 20 years later is estimated to be 85-97%. Finally, a "possible" diagnosis is made when the patient has only some of the characteristics of a disease are present, but not all.
A thorough history is essential and should cover family history, diet; drug/toxin exposure social history, including tobacco and alcohol use; and occupational background, with details on whether similar cases exist among coworkers. Treatment of any chronic disease such as pernicious anemia should always be elucidated.
In most cases of nutritional/toxic optic neuropathy, the diagnosis may be obtained via detailed medical history and eye examination. Additionally, supplementary neurological imaging studies, such as MRI or enhanced CT, may be performed if the cause remains unclear.
When the details of the examination and history indicate a familial history of similar ocular or systemic disease, whether or not there is evidence of toxic or nutritional causes for disease, certain genetic tests may be required. Because there are several congenital causes of mitochondrial dysfunction, the patients history, examination, and radiological studies must be examined in order to determine the specific genetic tests required. For example, 90% of cases of Leber’s Hereditary Optic Neuropathy (LHON) are associated with three common mtDNA point mutations (m.3460G>A/MT-ND1, m.11778G>A/MT-ND4, m.14484T>C/MT-ND6) while a wider range of mtDNA mutations (MT-ND1, MT-ND5, MT-ND6; http://www.mitomap.org/) have been associated with overlapping phenotypes of LHON, MELAS, and Leigh syndrome.
Glycerol Kinase Deficiency causes the condition known as hyperglycerolemia, an accumulation of glycerol in the blood and urine. This excess of glycerol in bodily fluids can lead to many more potentially dangerous symptoms. Common symptoms include vomiting and lethargy. These tend to be the only symptoms, if any, present in adult GKD which has been found to present with fewer symptoms than infant or juvenile GKD. When GKD is accompanied by Duchenne Muscular Dystrophy and Adrenal Hypoplasia Congenita, also caused by mutations on the Xp21 chromosome, the symptoms can become much more severe. Symptoms visible at or shortly after birth include:
- cryptorchidism
- strabismus
- seizures
Some other symptoms that become more noticeable with time would be:
- metabolic acidosis
- hypoglycemia
- adrenal cortex insufficiency
- learning disabilities
- osteoporosis
- myopathy
Many of the physically visible symptoms, such as cryptorchidism, strabismus, learning disabilities, and myopathy, tend to have an added psychological effect on the subject due to the fact that they can set him or her apart from those without GKD. Cryptorchidism, the failure of one or both of the testes to descend to the scrotum, has been known to lead to sexual identity confusion amongst young boys because it is such a major physiological anomaly. Strabismus is the misalignment of one’s eyes. Typically, one is focused but the other is “lazy” and is directed inward or out ward (up and down is less common but does occur).