Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diet and lifestyle are believed to play a large role in whether colorectal polyps form. Studies show there to be a protective link between consumption of cooked green vegetables, brown rice, legumes, and dried fruit and decreased incidence of colorectal polyps.
Screening for colonic polyps as well as preventing them has become an important part of the management of the condition. Medical societies have established guidelines for colorectal screening in order to prevent adenomatous polyps and to minimize the chances of developing colon cancer. It is believed that some changes in the diet might be helpful in preventing polyps from occurring but there is no other way to prevent the polyps from developing into cancerous growths than by detecting and removing them.
According to the guidelines established by the American Cancer Society, individuals who reach the age of 50 should perform an occult blood test yearly. Colon polyps as they grow can sometimes cause bleeding within the intestine, which can be detected with the help of this test. Also, persons in their 50s are recommended to have flexible sigmoidoscopies performed once in 3 to 5 years to detect any abnormal growth which could be an adenomatous polyp. If adenomatous polyps are detected during this procedure, it is most likely that the patient will have to undergo a colonoscopy. Medical societies recommend colonoscopies every ten years starting at age 50 as a necessary screening practice for colon cancer. The screening provides an accurate image of the intestine and also allows the removal of the polyp, if found. Once an adenomatous polyp is identified during colonoscopy, there are several methods of removal including using a snare or a heating device. Colonoscopies are preferred over sigmoidoscopies because they allow the examination of the entire colon; a very important aspect, considering that more than half of the colonic polyps occur in the upper colon, which is not reached during sigmoidoscopies.
It has been statistically demonstrated that screening programs are effective in reducing the number of deaths caused by colon cancer due to adenomatous polyps. While there are risks of complications associated with colonoscopies, those risks are extremely low at approximately 0.35 percent. For comparison, the lifetime risk of developing colon cancer is around 6 percent. As there is a small likelihood of recurrence, surveillance after polyp removal is recommended.
Because of the way familial polyposis develops, it is possible to have the genetic condition, and therefore be at risk, but have no polyps or issues so far. Therefore, an individual may be diagnosed "at risk of" FAP, and require routine monitoring, but not (yet) actually have FAP (i.e., carries a defective gene but as yet appears not to have any actual medical issue as a result of this). Clinical management can cover several areas:
- Identifying those individuals who could be at risk of FAP: usually from family medical history or genetic testing
- Diagnosis (confirming whether they have FAP)—this can be done either by genetic testing, which is definitive, or by visually checking the intestinal tract itself.
- Screening / monitoring programs involve visually examining the intestinal tract to check its healthy condition. It is undertaken as a routine matter every few years where there is cause for concern, when either (a) a genetic test has confirmed the risk or (b) a genetic test has not been undertaken for any reason so the actual risk is unknown. Screening and monitoring allows polyposis to be detected visually before it can become life-threatening.
- Treatment, typically surgery of some kind, is involved if polyposis has led to a large number of polyps, or a significant risk of cancer, or actual cancer.
Monitoring involves the provision of outpatient colonoscopy, and occasionally upper gastric tract esophagogastroduodenoscopy (EGD, to search for premalignant gastric or duodenal tumors), typically once every 1–3 years, and/or a genetic blood test to definitively confirm or deny susceptibility. A small number of polyps can often be excised (removed) during the procedure, if found, but if there are more severe signs or numbers, in patient surgery may be required.
NCBI states that when an individual is identified as having FAP, or the mutations resulting in FAP: "It is appropriate to evaluate the parents of an affected individual (a) with molecular genetic testing of APC if the disease-causing mutation is known in the proband [person first identified with the condition] or (b) for clinical manifestations of APC-associated polyposis conditions".
Colorectal polyps can be detected using a faecal occult blood test, flexible sigmoidoscopy, colonoscopy, virtual colonoscopy, digital rectal examination, barium enema or a pill camera.
Malignant potential is associated with
- degree of dysplasia
- Type of polyp (e.g. villous adenoma):
- Tubular Adenoma: 5% risk of cancer
- Tubulovillous adenoma: 20% risk of cancer
- Villous adenoma: 40% risk of cancer
- Size of polyp:
- <1 cm =<1% risk of cancer
- 1 cm=10% risk of cancer
- 2 cm=15% risk of cancer
Normally an adenoma which is greater than 0.5 cm is treated
Complete removal of a SSA is considered curative.
Several SSAs confer a higher risk of subsequently finding colorectal cancer and warrant more frequent surveillance. The surveillance guidelines are the same as for other colonic adenomas. The surveillance interval is dependent on (1) the number of adenomas, (2) the size of the adenomas, and (3) the presence of high-grade microscopic features.
Screening methods for colon cancer depend on detecting either precancerous changes such as certain kinds of polyps or on finding early and thus more treatable cancer. The extent to which screening procedures reduce the incidence of gastrointestinal cancer or mortality depends on the rate of precancerous and cancerous disease in that population. gFOBT (guaiac fecal occult blood test) and flexible sigmoidoscopy screening have each shown benefit in randomized clinical trials. Evidence for other colon cancer screening tools such as iFOBT (immunochemical fecal occult blood test) or colonoscopy is substantial and guidelines have been issued by several advisory groups but does not include randomized studies.
In 2009 the American College of Gastroenterology (ACG) suggest that colon cancer screening modalities that are also directly preventive by removing precursor lesions should be given precedence, and prefer a colonoscopy every 10 years in average-risk individuals, beginning at age 50. The ACG suggests that cancer detection tests such as any type of FOB are an alternative that is less preferred, and if a colonoscopy is declined, the FIT (fecal immunochemical test, or iFOBT) should be offered instead. Two other recent guidelines, from the US Multisociety Task Force (MSTF) and the US Preventive Services Task Force (USPSTF), while permitting immediate colonoscopy as an option, did not categorize it as preferred. The ACG and MSTF also included CT colonography every five years, and fecal DNA testing as considerations. All three recommendation panels recommended replacing any older low-sensitivity, guaiac-based fecal occult blood testing (gFOBT) with either newer high-sensitivity guaiac-based fecal occult blood testing (hs gFOBT) or fecal immunochemical testing (FIT). MSTF looked at six studies that compared high sensitivity gFOBT (Hemoccult SENSA) to FIT, and concluded that there was no clear difference in overall performance between these methods.
The American College of Gastroenterology has recommended the abandoning of gFOBT testing as a colorectal cancer screening tool, in favor of the fecal immunochemical test. Though the FIT test is preferred, even the guaiac FOB testing of average risk populations may have been sufficient to reduce the mortality associated with colon cancer by about 25%. With this lower efficacy, it was not always cost effective to screen a large population with gFOBT.
If colon cancer is suspected in an individual (such as in someone with an unexplained anemia) fecal occult blood tests may not be clinically helpful. If a doctor suspects colon cancer, more rigorous investigation is necessary, whether or not the test is positive.
In 2006, the Australian Government introduced the National Bowel Cancer Program which has been updated several times since; targeted screening will be done of all Australians aged over 50 to 74 by 2017–2018. Cancer Council Australia recommended that FOBT should be done every two years. Gradually government fund disbursement meant that some people are not yet eligible for the national program and should pay for a FOBT by themselves.
The Canadian Cancer Society recommends that men and women age 50 and over have a FOBT at least every 2 years.
In colon cancer screening, using only one sample of feces collected by a doctor performing a digital rectal examination is discouraged.
The use of the M2-PK Test is encouraged over gFOBT for routine screening as it may pick up tumors that are both bleeding and non bleeding. It is able to pick up 80 percent of colorectal cancer and 44 percent for adenoma > 1 centimeter, while gFOBT picks up 13 to 50 percent of colorectal cancers.
In the United States screening is typically recommended between the age of 50 and 75 years. For those between 76 and 85 years of age the decision to screen should be individualized. A number of screening methods can be used including stool based tests every 3 years, sigmoidoscopy every 5 years and colonoscopy every 10 years. For those at high risk, screenings usually begin at around 40. It is unclear which of these two methods is better. Colonoscopy may find more cancers in the first part of the colon but is associated with greater cost and more complications. For people with average risk who have had a high-quality colonoscopy with normal results, the American Gastroenterological Association does not recommend any type of screening in the 10 years following the colonoscopy. For people over 75 or those with a life expectancy of less than 10 years, screening is not recommended. It takes about 10 years after screening for one out of a 1000 people to benefit.
In Canada, among those 50 to 75 at normal risk, fecal immunochemical testing or FOBT is recommended every two years or sigmoidoscopy every 10 years. Colonoscopy is less preferred.
Some countries have national colorectal screening programs which offer FOBT screening for all adults within a certain age group, typically starting between age 50 and 60. Examples of countries with organised screening include the United Kingdom, Australia and the Netherlands.
The serrated polyposis syndrome (SPS) is a relatively rare condition characterized by multiple and/or large serrated polyps of the colon. Diagnosis of this disease is made by the fulfillment of any of the World Health Organization’s (WHO) clinical criteria.
Colon polyps are not commonly associated with symptoms. Occasionally rectal bleeding, and on rare occasions pain, diarrhea or constipation may occur because of colon polyps. Colon polyps are a concern because of the potential for colon cancer being present microscopically and the risk of benign colon polyps transforming over time into malignant ones. Since most polyps are asymptomatic, they are usually discovered at the time of colon cancer screening. Common screening methods are occult blood test, colonoscopy, sigmoidoscopy (usually flexible sigmoidoscopy, using a flexible endoscope, but more rarely the older rigid sigmoidoscopy, using a rigid endoscope), lower gastrointestinal series (barium enema), digital rectal examination (DRE), and virtual colonoscopy. The polyps are routinely removed at the time of colonoscopy either with a polypectomy snare (first description by P. Deyhle, Germany, 1970) or with biopsy forceps. If an adenomatous polyp is found with sigmoidoscopy or if a polyp is found with any other diagnostic modality, the patient must undergo colonoscopy for removal of the polyp(s). Even though colon cancer is usually not found in polyps smaller than 2.5 cm, all polyps found are removed since the removal of polyps reduces the future likelihood of developing colon cancer. When adenomatous polyps are removed, a repeat colonoscopy is usually performed in three to five years.
Most colon polyps can be categorized as sporadic.
Aspirin and celecoxib appear to decrease the risk of colorectal cancer in those at high risk. Aspirin is recommended in those who are 50 to 60 years old, do not have an increased risk of bleeding, and are at risk for cardiovascular disease to prevent colorectal cancer. It is not recommended in those at average risk. There is tentative evidence for calcium supplementation, but it is not sufficient to make a recommendation. Vitamin D intake and blood levels are associated with a lower risk of colon cancer.
There is a risk of development of cancer with fundic gland polyposis, but it varies based on the underlying cause of the polyposis. The risk is highest with congenital polyposis syndromes, and is lowest in acquired causes. As a result, it is recommended that patients with multiple fundic polyps have a colonoscopy to evaluate the colon. If there are polyps seen on colonoscopy, genetic testing and testing of family members is recommended.
In the gastric adenocarcinoma associated with proximal polyposis of the stomach (GAPPS), there is a high risk of early development of proximal gastric adenocarcinoma.
It is still unclear which patients would benefit with surveillance gastroscopy, but most physicians recommend endoscopy every one to three years to survey polyps for dysplasia or cancer. In the event of high grade dysplasia, polypectomy, which is done through the endoscopy, or partial gastrectomy may be recommended. One study showed the benefit of NSAID therapy in regression of gastric polyps, but the efficacy of this strategy (given the side effects of NSAIDs) is still dubious.
An extensive literature has examined the clinical value of FOBT in iron deficiency anemia.
After the initial diagnosis of Barrett's esophagus is rendered, affected persons undergo annual surveillance to detect changes that indicate higher risk to progression to cancer: development of epithelial dysplasia (or "intraepithelial neoplasia").
Considerable variability is seen in assessment for dysplasia among pathologists. Recently, gastroenterology and GI pathology societies have recommended that any diagnosis of high-grade dysplasia in Barrett be confirmed by at least two fellowship-trained GI pathologists prior to definitive treatment for patients. For more accuracy and reproductibility, it is also recommended to follow international classification system as the "Vienna classification" of gastrointestinal epithelial neoplasia (2000).
The presence of goblet cells, called intestinal metaplasia, is necessary to make a diagnosis of Barrett's esophagus. This frequently occurs in the presence of other metaplastic columnar cells, but only the presence of goblet cells is diagnostic. The metaplasia is grossly visible through a gastroscope, but biopsy specimens must be examined under a microscope to determine whether cells are gastric or colonic in nature. Colonic metaplasia is usually identified by finding goblet cells in the epithelium and is necessary for the true diagnosis.
Many histologic mimics of Barrett's esophagus are known (i.e. goblet cells occurring in the transitional epithelium of normal esophageal submucosal gland ducts, "pseudogoblet cells" in which abundant foveolar [gastric] type mucin simulates the acid mucin true goblet cells). Assessment of relationship to submucosal glands and transitional-type epithelium with examination of multiple levels through the tissue may allow the pathologist to reliably distinguish between goblet cells of submucosal gland ducts and true Barrett's esophagus (specialized columnar metaplasia). Use of the histochemical stain Alcian blue pH 2.5 is also frequently used to distinguish true intestinal-type mucins from their histologic mimics. Recently, immunohistochemical analysis with antibodies to CDX-2 (specific for mid and hindgut intestinal derivation) has also been used to identify true intestinal-type metaplastic cells. The protein AGR2 is elevated in Barrett's esophagus and can be used as a biomarker for distinguishing Barrett epithelium from normal esophageal epithelium.
The presence of intestinal metaplasia in Barrett's esophagus represents a marker for the progression of metaplasia towards dysplasia and eventually adenocarcinoma. This factor combined with two different immunohistochemical expression of p53, Her2 and p16 leads to two different genetic pathways that likely progress to dysplasia in Barrett's esophagus.
Fundic gland polyps are found in 0.8 to 1.9% of patients who undergo esophagogastroduodenoscopy, and are more common in middle aged women.
The most important consideration in evaluating patients with FGPs is distinguishing between sporadic form (patients without any other gastrointestinal condition, usually in middle age with female prevalence) and syndromic form. This is to ascertain the risk of development of gastric cancer, and to ascertain the risk of concomitant colon cancer.
FGPs can be found in association with the following genetic conditions:
- familial adenomatous polyposis
- attenuated familial adenomatous polyposis syndromes
- Zollinger-Ellison syndrome
- gastric adenocarcinoma associated with proxymal polyposis of the stomach (GAPPS): this condition, described in three families is characterized by development of antral adenomas and FGPs, with early development of severe dysplasia and gastric cancer, in absence of overt intestinal polyposis. This condition has been recently characterized by a point mutation in exon 1B of APC gene.
Sporadic FGPs have been associated with:
- chronic use of proton pump inhibitors (proposed by some authors, denied by others)
- "Helicobacter pylori" infection: there is a reverse relationship between infection and fundic gland polyps, and infection by "H pylori" causes polyps regression.
The most common method of testing for hepatoblastoma is a blood test checking the alpha-fetoprotein level. Alpha-fetoprotein (AFP) is used as a biomarker to help determine the presence of liver cancer in children. At birth, infants have relatively high levels of AFP, which fall to normal adult levels by the first year of life. The normal level for AFP in children has been reported as lower than 50 nanograms per milliliter (ng/ml) and 10 ng/ml. An AFP level greater than 500 (ng/ml) is a significant indicator of hepatoblastoma. AFP is also used as an indicator of treatment success. If treatments are successful in removing the cancer, the AFP level is expected to return to normal.
Multiple disorders are found in patients with radiation enteropathy, so guidance including an algorithmic approach to their investigation has been developed. This includes a holistic assessment with investigations including endoscopies, breath tests and other nutritional and gastrointestinal tests. Full investigation is important as many cancer survivors of radiation therapy develop other causes for their symptoms such as colonic polyps, diverticular disease or hemorrhoids.
10-year survival rates for mucinous tumors is excellent in the absence of invasion.
In the case of borderline tumors confined to the ovary and malignant tumors without invasion, the survival rates are 90% or greater. In invasive mucinous cystadenocarcinomas, the survival is approximately 30%
For surface epithelial-stromal tumors, the most common sites of metastasis are the pleural cavity (33%), the liver (26%), and the lungs (3%).
Villous adenoma is a type of polyp that grows in the colon and other places in the gastrointestinal tract and sometimes in other parts of the body. These adenomas may become malignant (cancerous). Villous adenomas have been demonstrated to contain malignant portions in about one third of affected persons, and invasive malignancy in another one third of removed specimens. Colonic resection may be required for large lesions. These can also lead to secretory diarrhea with large volume liquid stools with few formed elements. They are commonly described as secreting large amounts of mucus, resulting in hypokalaemia in patients. On endoscopy a "cauliflower' like mass is described due to villi stretching. Being an adenoma, the mass is covered in columnar epithelial cells.
An increasing number of people are now surviving cancer, with improved treatments producing cure of the malignancy (cancer survivors). There are now over 14 million such people in the US, and this figure is expected to increase to 18 million by 2022. More than half are survivors of abdominal or pelvic cancers, with about 300,000 people receiving abdominal and pelvic radiation each year. It has been estimated there are 1.6 million people in the US with post-radiation intestinal dysfunction, a greater number than those with inflammatory bowel disease such as Crohn's disease or ulcerative colitis.
Surgical removal of the tumor, adjuvant chemotherapy prior to tumor removal, and liver transplantation have been used to treat these cancers. Primary liver transplantation provides high, long term, disease-free survival rate in the range of 80%, in cases of complete tumor removal and adjuvant chemotherapy survival rates approach 100%. The presence of metastases is the strongest predictor of a poor prognosis.
From a pathology perspective, several tumors need to be considered in the differential diagnosis, including paraganglioma, ceruminous adenoma, metastatic adenocarcinoma, and meningioma.
For more general information, see ovarian cancer.
For advanced cancer of this histology, the US National Cancer Institute recommends a method of chemotherapy that combines intravenous (IV) and intraperitoneal (IP) administration. Preferred chemotherapeutic agents include a platinum drug with a taxane.