Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Frostbite is diagnosed based on signs and symptoms as described above, and by patient history. Other conditions that can have a similar appearance or occur at the same time include:
- Frostnip is similar to frostbite, but without ice crystal formation in the skin. Whitening of the skin and numbness reverse quickly after rewarming.
- Trench foot is damage to nerves and blood vessels that results exposure to wet, cold (non-freezing) conditions. This is reversible if treated early.
- Pernio or chillbains are inflammation of the skin from exposure to wet, cold (non-freezing) conditions. They can appears as various types of ulcers and blisters.
- Bullous pemphigoid is a condition that causes itchy blisters over the body that can mimic frostbite. It does not require exposure to cold to develop.
- Levamisole toxicity is a vasculitis that can appear similar to frostbite. It is caused by contamination of cocaine by levamisole. Skin lesions can look similar those of frostbite, but do not require cold exposure to occur.
People who have hypothermia often have frostbite as well. Since hypothermia is life-threatening this should be treated first. Technetium-99 or MR scans are not required for diagnosis, but might be useful for prognostic purposes.
Tissue loss and autoamputation are potential consequences of frostbite. Permanent nerve damage including loss of feeling can occur. It can take several weeks to know what parts of the tissue will survive. Time of exposure to cold is more predictive of lasting injury than temperature the individual was exposed to. The classification system of grades, based on the tissue response to initial rewarming and other factors is designed to predict degree of longterm recovery.
Accurate determination of core temperature often requires a special low temperature thermometer, as most clinical thermometers do not measure accurately below . A low temperature thermometer can be placed in the rectum, esophagus or bladder. Esophageal measurements are the most accurate and are recommended once a person is intubated. Other methods of measurement such as in the mouth, under the arm, or using an infrared ear thermometer are often not accurate.
As a hypothermic person's heart rate may be very slow, prolonged feeling for a pulse could be required before detecting. In 2005, the American Heart Association recommended at least 30–45 seconds to verify the absence of a pulse before initiating CPR. Others recommend a 60-second check.
The classical ECG finding of hypothermia is the Osborn J wave. Also, ventricular fibrillation frequently occurs below and asystole below . The Osborn J may look very similar to those of an acute ST elevation myocardial infarction. Thrombolysis as a reaction to the presence of Osborn J waves is not indicated, as it would only worsen the underlying coagulopathy caused by hypothermia.
Recompression treatment in a hyperbaric chamber was initially used as a life-saving tool to treat decompression sickness in caisson workers and divers who stayed too long at depth and developed decompression sickness. Now, it is a highly specialized treatment modality that has been found to be effective in the treatment of many conditions where the administration of oxygen under pressure has been found to be beneficial. Studies have shown it to be quite effective in some 13 indications approved by the Undersea and Hyperbaric Medical Society.
Hyperbaric oxygen treatment is generally preferred when effective, as it is usually a more efficient and lower risk method of reducing symptoms of decompression illness, However, in some cases recompression to pressures where oxygen toxicity is unacceptable may be required to eliminate the bubbles in the tissues that cause the symptoms.
Appropriate clothing helps to prevent hypothermia. Synthetic and wool fabrics are superior to cotton as they provide better insulation when wet and dry. Some synthetic fabrics, such as polypropylene and polyester, are used in clothing designed to wick perspiration away from the body, such as liner socks and moisture-wicking undergarments. Clothing should be loose fitting, as tight clothing reduces the circulation of warm blood. In planning outdoor activity, prepare appropriately for possible cold weather. Those who drink alcohol before or during outdoor activity should ensure at least one sober person is present responsible for safety.
Covering the head is effective, but no more effective than covering any other part of the body. While common folklore says that people lose most of their heat through their heads, heat loss from the head is no more significant than that from other uncovered parts of the body. However, heat loss from the head is significant in infants, whose head is larger relative to the rest of the body than in adults. Several studies have shown that for uncovered infants, lined hats significantly reduce heat loss and thermal stress. Children have a larger surface area per unit mass, and other things being equal should have one more layer of clothing than adults in similar conditions, and the time they spend in cold environments should be limited. However children are often more active than adults, and may generate more heat. In both adults and children, overexertion causes sweating and thus increases heat loss.
Building a shelter can aid survival where there is danger of death from exposure. Shelters can be of many different types, metal can conduct heat away from the occupants and is sometimes best avoided. The shelter should not be too big so body warmth stays near the occupants. Good ventilation is essential especially if a fire will be lit in the shelter. Fires should be put out before the occupants sleep to prevent carbon monoxide poisoning. People caught in very cold, snowy conditions can build an igloo or snow cave to shelter.
The United States Coast Guard promotes using life vests to protect against hypothermia through the 50/50/50 rule: If someone is in water for 50 minutes, he/she has a 50 percent better chance of survival if wearing a life jacket. A heat escape lessening position can be used to increase survival in cold water.
Babies should sleep at 16-20 °C (61-68 °F) and housebound people should be checked regularly to make sure the temperature of the home is at least 18 °C (64 °F).
The administration of oxygen as a medical intervention is common in diving medicine, both for first aid and for longer term treatment.
Drowning victims who arrive at a hospital with spontaneous circulation and breathing usually recover with good outcomes. Early provision of basic and advanced life support improve probability of positive outcome.
Longer duration of submersion is associated with lower probability of survival and higher probability of permanent neurological damage.
Contaminants in the water can cause bronchospasm and impaired gas exchange, and can cause secondary infection with delayed severe respiratory compromise.
Low water temperature can cause ventricular fibrillation, but hypothermia during immersion can also slow the metabolism, allowing a longer hypoxia before severe damage occurs. Hypothermia which reduces brain temperature significantly can improve outcome. A reduction of brain temperature by 10 °C decreases ATP consumption by approximately 50%, which can double the time that the brain can survive.
The younger the victim, the better the chances of survival. In one case, a child submerged in cold () water for 66 minutes was resuscitated without apparent neurological damage. However, over the long term significant deficits were noted, including a range of cognitive difficulties, particularly general memory impairment, although recent magnetic resonance imaging (MRI) and magnetoencephalography (MEG) were within normal range.
Most drowning is preventable. It has been estimated that more than 85% of drownings could have been prevented by supervision, training in water skills, technology, regulation and public education.
Radiography, imaging of tissues using X-rays, is used to rule out facial fractures. Angiography (X-rays taken of the inside of blood vessels) can be used to locate the source of bleeding. However the complex bones and tissues of the face can make it difficult to interpret plain radiographs; CT scanning is better for detecting fractures and examining soft tissues, and is often needed to determine whether surgery is necessary, but it is more expensive and difficult to obtain. CT scanning is usually considered to be more definitive and better at detecting facial injuries than X-ray. CT scanning is especially likely to be used in people with multiple injuries who need CT scans to assess for other injuries anyway.
Measures to reduce facial trauma include laws enforcing seat belt use and public education to increase awareness about the importance of seat belts and motorcycle helmets. Efforts to reduce drunk driving are other preventative measures; changes to laws and their enforcement have been proposed, as well as changes to societal attitudes toward the activity. Information obtained from biomechanics studies can be used to design automobiles with a view toward preventing facial injuries. While seat belts reduce the number and severity of facial injuries that occur in crashes, airbags alone are not very effective at preventing the injuries. In sports, safety devices including helmets have been found to reduce the risk of severe facial injury. Additional attachments such as face guards may be added to sports helmets to prevent orofacial injury (injury to the mouth or face); mouth guards also used.
Although strains are not restricted to athletes and can happen while doing everyday tasks, however, people who play sports are more at risk for developing a strain. It should also be noted that it is common for an injury to develop when there is a sudden increase in duration, intensity, or frequency of an activity.
The Control of Vibration at Work Regulations 2005, created under the Health and Safety at Work etc. Act 1974. is the legislation in the UK that governs exposure to vibration and assists with preventing HAVS occurring.
Good practice in industrial health and safety management requires that worker vibration exposure is assessed in terms of acceleration amplitude and duration. Using a tool that vibrates slightly for a long time can be as damaging as using a heavily vibrating tool for a short time. The duration of use of the tool is measured as trigger time, the period when the worker actually has their finger on the trigger to make the tool run, and is typically quoted in hours per day. Vibration amplitude is quoted in metres per second squared, and is measured by an accelerometer on the tool or given by the manufacturer. Amplitudes can vary significantly with tool design, condition and style of use, even for the same type of tool.
In the UK, Health and Safety Executive gives the example of a hammer drill which can vary from 6m/s² to 25m/s². HSE publishes a list of typically observed vibration levels for various tools, and graphs of how long each day a worker can be exposed to particular vibration levels. This makes managing the risk relatively straightforward. Tools are given an Exposure Action Value (EAV, the time which a tool can be used before action needs to be taken to reduce vibration exposure) and an Exposure Limit Value (ELV, the time after which a tool may not be used).
In the United States, the National Institute for Occupational Safety and Health published a similar database where values for sound power and vibrations for commonly found tools from large commercial vendors in the United States were surveyed. Further testing is underway for more and newer tools.
The effect of legislation in various countries on worker vibration limits has been to oblige equipment providers to develop better-designed, better-maintained tools, and for employers to train workers appropriately. It also drives tool designers to innovate to reduce vibration. Some examples are the easily manipulated mechanical arm (EMMA) and the suspension mechanism designed into chainsaws.
Anti vibration gloves are traditionally made with a thick and soft palm material to insulate from the vibrations. The protection is highly dependent on frequency range, most gloves provide no protection in palm and wrist below ~50Hz and in fingers below ~400Hz. Factors such as high grip force, cold hands or vibration forces in shear direction can have a reducing effect and or increase damage to the hands and arms. Gloves do help to keep hands warm but to get the desired effect, the frequency output from the tool must match the properties of the vibration glove that is selected. It should be noted that Anti Vibration gloves in many cases amplify the vibrations at frequencies lower than those mentioned in the text above.
Nasal fractures are usually identified visually and through physical examination. Medical imaging is generally not recommended. A priority is to distinguish simple fractures limited to the nasal bones (Type 1) from fractures that also involve other facial bones and/or the nasal septum (Types 2 and 3). In simple Type 1 fractures X-Rays supply surprisingly little information beyond clinical examination. However, diagnosis may be confirmed with X-rays or CT scans, and these are required if other facial injuries are suspected.
A fracture that runs horizontally across the septum is sometimes called a "Jarjavay fracture", and a vertical one, a "Chevallet fracture".
Although treatment of an uncomplicated fracture of nasal bones is not urgent—a referral for specific treatment in five to seven days usually suffices—an associated injury, nasal septal hematoma, occurs in about 5% of cases and does require urgent treatment and should be looked for during the assessment of nasal injuries.
The first-line treatment for a muscular strain in the acute phase include five steps commonly known as P.R.I.C.E.
- Protection: Apply soft padding to minimize impact with objects.
- Rest: Rest is necessary to accelerate healing and reduce the potential for re-injury.
- Ice: Apply ice to induce vasoconstriction, which will reduce blood flow to the site of injury. Never ice for more than 20 minutes at a time.
- Compression: Wrap the strained area with a soft-wrapped bandage to reduce further diapedesis and promote lymphatic drainage.
- Elevation: Keep the strained area as close to the level of the heart as is possible in order to promote venous blood return to the systemic circulation.
Immediate treatment is usually an adjunctive therapy of NSAID's and Cold compression therapy. Controlling the inflammation is critical to the healing process. Cold compression therapy acts to reduce swelling and pain by reducing leukocyte extravasation into the injured area. NSAID's such as Ibuprofen/paracetamol work to reduce the immediate inflammation by inhibiting Cox-1 & Cox-2 enzymes, which are the enzymes responsible for converting arachidonic acid into prostaglandin. However, NSAIDs, including aspirin and ibuprofen, affect platelet function (this is why they are known as "blood thinners") and should not be taken during the period when tissue is bleeding because they will tend to increase blood flow, inhibit clotting, and thereby increase bleeding and swelling. After the bleeding has stopped, NSAIDs can be used with some effectiveness to reduce inflammation and pain.
A new treatment for acute strains is the use of platelet rich plasma (PRP) injections which have been shown to accelerate recovery from non surgical muscular injuries.
It is recommended that the person injured should consult a medical provider if the injury is accompanied by severe pain, if the limb cannot be used, or if there is noticeable tenderness over an isolated spot. These can be signs of a broken or fractured bone, a sprain, or a complete muscle tear.
Management of tendon injuries in the fingers is to follow the RICE method.
- Immediately cease climbing and any other activity that puts stress on the injured finger. Consult a doctor if there is noticeable "bowstringing" on the flexor tendon or if you are the least unsure about the nature of the injury.
- There are different theories out there for the preferred line of approach. Some argue for the use of NSAIDs and ice for visible swelling only, others argue diclofenac sodium should be applied and carefully rubbed in on the injury until the swelling starts to give.
- When the pain and swelling is gone (depending of the grade of the injury, 1–4 weeks), begin with an active healing process – containing squeezing putty clay or a stress ball. Combine this with light massage and mild stretching to ensure your finger will heal properly and better prepared for future stress. The use of heating pads and cold water baths are also mentioned in several sources in order to increase blood flow. Use this therapy for about twice as long as the previous resting period (2–8 weeks) before gradually returning, with the utmost care, to climbing.
- Gradually return to climbing while using prophylactic taping every time you climb, and spend the first weeks climbing relatively easy routes with big holds, good footholds and keep your sessions short and stay away from overhangs and campus areas/boards.
- Return to full-force climbing if easy climbing yields no pain. Continue taping (it will also serve as a mental note of the previous injury) and avoid tweaky crimps and pockets for several months, since complete tendon healing can take 100 days or more.
Most penile trauma can be diagnosed by visual and physical examination, but in some cases, ultrasonography can indicate the extent of the injury and help a clinician decide if the injured person needs surgical treatment.
Bone stability after a fracture occurs between 3 and 4 weeks. Some experts suggest not wearing glasses or blowing the nose during this time as it can affect the bone alignment. Full bone fusion occurs between 4 and 8 weeks. General activity is fine after 1–2 weeks, but contact sports are not advisable for at least 2–3 months, depending on the extent of injury. It is recommended that when participating in sports a face guard should be worn for at least 6 weeks post-injury.
Prevention of MSDs relies upon identification of risk factors, either by self-report, observation on the job, or measurement of posture which could lead to MSDs. Once risk factors have been determined, there are several intervention methods which could be used to prevent the development of MSDs. The target of MSD prevention efforts is often the workplace in order to identify incidence rates of both disorders and exposure to unsafe conditions.
Assessment of MSDs are based on self-reports of symptoms and pain as well as physical examination by a doctor. Doctors rely on medical history, recreational and occupational hazards, intensity of pain, a physical exam to locate the source of the pain, and sometimes lab tests, x-rays, or an MRI Doctors look for specific criteria to diagnose each different musculoskeletal disorder, based on location, type, and intensity of pain, as well as what kind of restricted or painful movement a patient is experiencing. A popular measure of MSDs is the Nordic Questionnaire that has a picture of the body with various areas labeled and asks the individual to indicate in which areas they have experienced pain, and in which areas has the pain interfered with normal activity.
Penetrating and blunt traumas combined make up approximately 90% of all civilian penile injuries (45% each), with burns and other accidents making up the remaining 10%.
Achilles tendinitis is mainly diagnosed by a medical history taking and a physical examination. Projectional radiography shows calcification deposits within the tendon at its calcaneal insertion in approximately 60 percent of cases. Magnetic resonance imaging (MRI) can determine the extent of tendon degeneration, and may show differential diagnoses such as bursitis.
The diagnosis of a sprain relies on the medical history, including symptoms, as well as making a differential diagnosis, mainly in distinguishing it from strains or bone fractures. The Ottawa ankle rule is a simple, widely used rule to help differentiate fractures of the ankle or mid-foot from other ankle injuries that do not require x-ray radiography. It has a specificity of nearly 100%, meaning that a patient who tests negative, according to the rule almost certainly does not have an ankle fracture.
Diagnosis is typically obtained by an allergist or other licensed practitioner performing a cold test. During the cold test, a piece of ice is held against the forearm, typically for 3–4 minutes. A positive result is a specific looking mark of raised red hives. The hives may be the shape of the ice, or it may radiate from the contact area of the ice." However, while these techniques assist in diagnosis, they do not provide information about temperature and stimulation time thresholds at which patients will start to develop symptoms."which is essential because it can establish disease severity and monitor the effectiveness of treatment.
With rest, the tail returns to normal within a few days. Pain relief, such as a nonsteroidal anti-inflammatory drug may be administered. The symptoms may reoccur.