Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Assessment of patients with DES can be difficult because traditional tests generally focus on one specific problem for a short period of time. People with DES can do fairly well on these tests because their problems are related to integrating individual skills into everyday tasks. The lack of everyday application of traditional tests is known as low ecological validity.
Clinically, anosognosia is often assessed by giving patients an anosognosia questionnaire in order to assess their metacognitive knowledge of deficits. However, neither of the existing questionnaires applied in the clinics are designed thoroughly for evaluating the multidimensional nature of this clinical phenomenon; nor are the responses obtained via offline questionnaire capable of revealing the discrepancy of awareness observed from their online task performance. The discrepancy is noticed when patients showed no awareness of their deficits from the offline responses to the questionnaire but demonstrated reluctance or verbal circumlocution when asked to perform an online task. For example, patients with anosognosia for hemiplegia may find excuses not to perform a bimanual task even though they do not admit it is because of their paralyzed arms.
A similar situation can happen on patients with anosognosia for cognitive deficits after traumatic brain injury when monitoring their errors during the tasks regarding their memory and attention (online emergent awareness) and when predicting their performance right before the same tasks (online anticipatory awareness). It can also occur among patients with dementia and anosognosia for memory deficit when prompted with dementia-related words, showing possible pre-attentive processing and implicit knowledge of their memory problems. More interestingly, patients with anosognosia may overestimate their performance when asked in first-person formed questions but not from a third-person perspective when the questions referring to others.
When assessing the causes of anosognosia within stroke patients, CT scans have been used to assess where the greatest amount of damage is found within the various areas of the brain. Stroke patients with mild and severe levels of anosognosia (determined by response to an anosognosia questionnaire) have been linked to lesions within the temporoparietal and thalamic regions, when compared to those who experience moderate anosognosia, or none at all. In contrast, after a stroke, people with moderate anosognosia have a higher frequency of lesions involving the basal ganglia, compared to those with mild or severe anosognosia.
There are several measures that can be employed to assess the executive functioning capabilities of an individual. Although a trained non-professional working outside of an institutionalized setting can legally and competently perform many of these measures, a trained professional administering the test in a standardized setting will yield the most accurate results.
Diagnosis for aboulia can be quite difficult because it falls between two other disorders of diminished motivation, and one could easily see an extreme case of aboulia as akinetic mutism or a lesser case of aboulia as apathy and therefore, not treat the patient appropriately. If it were to be confused with apathy, it might lead to attempts to involve the patient with physical rehabilitation or other interventions where a source of strong motivation would be necessary to succeed but would still be absent. The best way to diagnose aboulia is through clinical observation of the patient as well as questioning of close relatives and loved ones to give the doctor a frame of reference with which they can compare the patient's new behavior to see if there is in fact a case of diminished motivation. In recent years, imaging studies using a CT or MRI scan have been shown to be quite helpful in localizing brain lesions which have been shown to be one of the main causes of aboulia.
The Behavioural Assessment of the Dysexecutive Syndrome (BADS) was designed to address the problems of traditional tests and evaluate the everyday problems arising from DES. BADS is designed around six subtests and ends with the Dysexecutive Questionnaire (DEX). These tests assess executive functioning in more complex, real-life situations, which improves their ability to predict day-to-day difficulties of DES.
The Dysexecutive Questionnaire (DEX) is a 20-item questionnaire designed to sample emotional, motivational, behavioural and cognitive changes in a subject with DES. One version is designed for the subject to complete and another version is designed for someone who is close to the individual, such as a relative or caregiver. Instructions are given to the participant to read 20 statements describing common problems of everyday life and to rate them according to their personal experience. Each item is scored on a 5-point scale according to its frequency from "never" (0 point) to "very often" (4 points).
There is much research that needs to be conducted on CCAS. A necessity for future research is to conduct more longitudinal studies in order to determine the long-term effects of CCAS. One way this can be done is by studying cerebellar hemorrhage that occurs during infancy. This would allow CCAS to be studied over a long period to see how CCAS affects development. It may be of interest to researchers to conduct more research on children with CCAS, as the survival rate of children with tumors in the cerebellum is increasing. Hopefully future research will bring new insights on CCAS and develop better treatments.
The Clock drawing test (CDT) is a brief cognitive task that can be used by physicians who suspect neurological dysfunction based on history and physical examination. It is relatively easy to train non-professional staff to administer a CDT. Therefore, this is a test that can easily be administered in educational and geriatric settings and can be utilized as a precursory measure to indicate the likelihood of further/future deficits. Also, generational, educational and cultural differences are not perceived as impacting the utility of the CDT.
The procedure of the CDT begins with the instruction to the participant to draw a clock reading a specific time (generally 11:10). After the task is complete, the test administrator draws a clock with the hands set at the same specific time. Then the patient is asked to copy the image. Errors in clock drawing are classified according to the following categories: omissions, perseverations, rotations, misplacements, distortions, substitutions and additions. Memory, concentration, initiation, energy, mental clarity and indecision are all measures that are scored during this activity. Those with deficits in executive functioning will often make errors on the first clock but not the second. In other words, they will be unable to generate their own example, but will show proficiency in the copying task.
In regard to anosognosia for neurological patients, no long-term treatments exist. As with unilateral neglect, caloric reflex testing (squirting ice cold water into the left ear) is known to temporarily ameliorate unawareness of impairment. It is not entirely clear how this works, although it is thought that the unconscious shift of attention or focus caused by the intense stimulation of the vestibular system temporarily influences awareness. Most cases of anosognosia appear to simply disappear over time, while other cases can last indefinitely. Normally, long-term cases are treated with cognitive therapy to train patients to adjust for their inoperable limbs (though it is believed that these patients still are not "aware" of their disability). Another commonly used method is the use of feedback – comparing clients' self-predicted performance with their actual performance on a task in an attempt to improve insight.
Neurorehabilitation is difficult because, as anosognosia impairs the patient's desire to seek medical aid, it may also impair their ability to seek rehabilitation. A lack of awareness of the deficit makes cooperative, mindful work with a therapist difficult. In the acute phase, very little can be done to improve their awareness, but during this time, it is important for the therapist to build a therapeutic alliance with patients by entering their phenomenological field and reducing their frustration and confusion. Since severity changes over time, no single method of treatment or rehabilitation has emerged or will likely emerge.
In regard to psychiatric patients, empirical studies verify that, for individuals with severe mental illnesses, lack of awareness of illness is significantly associated with both medication non-compliance and re-hospitalization. Fifteen percent of individuals with severe mental illnesses who refuse to take medication voluntarily under any circumstances may require some form of coercion to remain compliant because of anosognosia. Coercive psychiatric treatment is a delicate and complex legal and ethical issue.
One study of voluntary and involuntary inpatients confirmed that committed patients require coercive treatment because they fail to recognize their need for care. The patients committed to the hospital had significantly lower measures of insight than the voluntary patients.
Anosognosia is also closely related to other cognitive dysfunctions that may impair the capacity of an individual to continuously participate in treatment. Other research has suggested that attitudes toward treatment can improve after involuntary treatment and that previously committed patients tend later to seek voluntary treatment.
Diagnosis of Wernicke–Korsakoff syndrome is by clinical impression and can sometimes be confirmed by a formal neuropsychological assessment. Wernicke's encephalopathy typically presents with ataxia and nystagmus, and Korsakoff's psychosis with anterograde and retrograde amnesia and confabulation upon relevant lines of questioning.
Frequently, secondary to thiamine deficiency and subsequent cytotoxic edema in Wernicke's encephalopathy, patients will have marked degeneration of the mamillary bodies. Thiamine (vitamin B) is an essential coenzyme in carbohydrate metabolism and is also a regulator of osmotic gradient. Its deficiency may cause swelling of the intracellular space and local disruption of the blood-brain barrier. Brain tissue is very sensitive to changes in electrolytes and pressure and edema can be cytotoxic. In Wernicke's this occurs specifically in the mammillary bodies, medial thalami, tectal plate, and periaqueductal areas. Sufferers may also exhibit a dislike for sunlight and so may wish to stay indoors with the lights off. The mechanism of this degeneration is unknown, but it supports the current neurological theory that the mammillary bodies play a role in various "memory circuits" within the brain. An example of a memory circuit is the Papez circuit.
A lack of motivation has been reported in 25–50% of patients with Alzheimer's disease. While depression is also common in patients with this disease, aboulia is not a mere symptom of depressions because more than half of the patients with Alzheimer's disease with aboulia do not suffer from depression. Several studies have shown that aboulia is most prevalent in cases of severe dementia which may result from reduced metabolic activity in the prefrontal regions of the brain. Patients with Alzheimer's disease and aboulia are significantly older than patients with Alzheimer's who do not lack motivation. Going along with that, the prevalence of aboulia increased from 14% in patients with a mild case Alzheimer's disease to 61% in patients with a severe case of Alzheimer's disease, which most likely developed over time as the patient got older.
The current treatments for CCAS focus on relieving the symptoms. One treatment is a cognitive-behavioral therapy (CBT) technique that involves making the patient aware of his or hers cognitive problems. For example, many CCAS patients struggle with multitasking. With CBT, the patient would have to be aware of this problem and focus on just one task at a time. This technique is also used to relieve some motor symptoms. In a case study with a patient who had a stroke and developed CCAS, improvements in mental function and attention were achieved through reality orientation therapy and attention process training. Reality orientation therapy consists of continually exposing the patient to stimuli of past events, such as photos. Attention process training consists of visual and auditory tasks that have been shown to improve attention. The patient struggled in applying these skills to “real-life” situations. It was the help of his family at home that significantly helped him regain his ability to perform activities of daily living. The family would motivate the patient to perform basic tasks and made a regular schedule for him to follow.
Transcranial magnetic stimulation (TMS) has also been proposed to be a possible treatment of psychiatric disorders of the cerebellum. One study used TMS on the vermis of patients with schizophrenia. After stimulation, the patients showed increased happiness, alertness and energy, and decreased sadness. Neuropsychological testing post-stimulation showed improvements in working memory, attention, and visual spatial skill. Another possible method of treatment for CCAS is doing exercises that are used to relieve the motor symptoms. These physical exercises have been shown to also help with the cognitive symptoms.
Medications that help relieve deficits in traumatic brain injuries in adults have been proposed as candidates to treat CCAS. Bromocriptine, a direct D2 agonist, has been shown to help with deficits in executive function and spatial learning abilities. Methylphendiate has been shown to help with deficits in attention and inhibition. Neither of these drugs has yet been tested on a CCAS population. It may also be that some of the symptoms of CCAS improve over time without any formal treatment. In the original report of CCAS, four patients with CCAS were re-examined one to nine months after their initial neuropsychological evaluation. Three of the patients showed improvement in deficits without any kind of formal treatment, though executive function was still found to be one standard deviation below average. In one patient, the deficits worsened over time. This patient had cerebellar atrophy and worsened in visual spatial abilities, concept formation, and verbal memory. It should be noted that none of these treatments were tested on a large enough sample to determine if they would help with the general CCAS population. Further research needs to be done on treatments for CCAS.
Older people with cognitive impairment appear to improve somewhat with light therapy.
There are few neuropsychological assessments that can definitively diagnose prosopagnosia. One commonly used test is the famous faces tests, where individuals are asked to recognize the faces of famous persons. However, this test is difficult to standardize. The Benton Facial Recognition Test (BFRT) is another test used by neuropsychologists to assess face recognition skills. Individuals are presented with a target face above six test faces and are asked to identify which test face matches the target face. The images are cropped to eliminate hair and clothes, as many people with prosopagnosia use hair and clothing cues to recognize faces. Both male and female faces are used during the test. For the first six items only one test face matches the target face; during the next seven items, three of the test faces match the target faces and the poses are different. The reliability of the BFRT was questioned when a study conducted by Duchaine and Nakayama showed that the average score for 11 self-reported prosopagnosics was within the normal range.
The test may be useful for identifying patients with apperceptive prosopagnosia, since this is mainly a matching test and they are unable to recognize both familiar and unfamiliar faces. They would be unable to pass the test. It would not be useful in diagnosing patients with associative prosopagnosia since they are able to match faces.
The Cambridge Face Memory Test (CFMT) was developed by Duchaine and Nakayama to better diagnose people with prosopagnosia. This test initially presents individuals with three images each of six different target faces. They are then presented with many three-image series, which contain one image of a target face and two distracters. Duchaine and Nakayama showed that the CFMT is more accurate and efficient than previous tests in diagnosing patients with prosopagnosia. Their study compared the two tests and 75% of patients were diagnosed by the CFMT, while only 25% of patients were diagnosed by the BFRT. However, similar to the BFRT, patients are being asked to essentially match unfamiliar faces, as they are seen only briefly at the start of the test. The test is not currently widely used and will need further testing before it can be considered reliable.
The 20-item Prosopagnosia Index (PI20) is a freely available and validated self-report questionnaire that is able to identify individuals with prosopagnosia. It has been validated against the famous faces test and Cambridge Face Memory Test, with evidence that PI20 scores are correlated with performance on these objective measures of face recognition. It can be downloaded from the Royal Society's Open Science website and on . Alternatively, the questionnaire can be completed online on the official website.
At its most basic level, dyscalculia is a learning disability affecting the normal development of arithmetic skills.
A consensus has not yet been reached on appropriate diagnostic criteria for dyscalculia. Mathematics is a specific domain that is complex (i.e. includes many different processes, such as arithmetic, algebra, word problems, geometry, etc.) and cumulative (i.e. the processes build on each other such that mastery of an advanced skill requires mastery of many basic skills). Thus dyscalculia can be diagnosed using different criteria, and frequently is; this variety in diagnostic criteria leads to variability in identified samples, and thus variability in research findings regarding dyscalculia.
Other than using achievement tests as diagnostic criteria, researchers often rely on domain-specific tests (i.e. tests of working memory, executive function, inhibition, intelligence, etc.) and teacher evaluations to create a more comprehensive diagnosis. Alternatively, fMRI research has shown that the brains of the neurotypical children can be reliably distinguished from the brains of the dyscalculic children based on the activation in the prefrontal cortex. However, due to the cost and time limitations associated with brain and neural research, these methods will likely not be incorporated into diagnostic criteria despite their effectiveness.
Cognitive deficit or cognitive impairment is an inclusive term to describe any characteristic that acts as a barrier to the cognition process.
The term may describe
- deficits in overall intelligence (as with intellectual disabilities),
- specific and restricted deficits in cognitive abilities (such as in learning disorders like dyslexia),
- neuropsychological deficits (such as in attention, working memory or executive function),
- or it may describe drug-induced impairment in cognition and memory (such as that seen with alcohol, glucocorticoids, and the benzodiazepines.)
It usually refers to a durable characteristic, as opposed to altered level of consciousness, which may be acute and reversible. Cognitive deficits may be inborn or caused by environmental factors such as brain injuries, neurological disorders, or mental illness.
Many normed assessments can be used in evaluating skills in the primary academic domains: reading, including word recognition, fluency, and comprehension; mathematics, including computation and problem solving; and written expression, including handwriting, spelling and composition.
The most commonly used comprehensive achievement tests include the Woodcock-Johnson IV (WJ IV), Wechsler Individual Achievement Test II (WIAT II), the Wide Range Achievement Test III (WRAT III), and the Stanford Achievement Test–10th edition. These tests include measures of many academic domains that are reliable in identifying areas of difficulty.
In the reading domain, there are also specialized tests that can be used to obtain details about specific reading deficits. Assessments that measure multiple domains of reading include Gray's Diagnostic Reading Tests–2nd edition (GDRT II) and the Stanford Diagnostic Reading Assessment. Assessments that measure reading subskills include the Gray Oral Reading Test IV – Fourth Edition (GORT IV), Gray Silent Reading Test, Comprehensive Test of Phonological Processing (CTOPP), Tests of Oral Reading and Comprehension Skills (TORCS), Test of Reading Comprehension 3 (TORC-3), Test of Word Reading Efficiency (TOWRE), and the Test of Reading Fluency. A more comprehensive list of reading assessments may be obtained from the Southwest Educational Development Laboratory.
The purpose of assessment is to determine what is needed for intervention, which also requires consideration of contextual variables and whether there are comorbid disorders that must also be identified and treated, such as behavioral issues or language delays. These contextual variables are often assessed using parent and teacher questionnaire forms that rate the students' behaviors and compares them to standardized norms.
However, caution should be made when suspecting the person with a learning disability may also have dementia, especially as people with Down's syndrome may have the neuroanatomical profile but not the associated clinical signs and symptoms. Examination can be carried out of executive functioning as well as social and cognitive abilities but may need adaptation of standardized tests to take account of special needs.
As described, Korsakoff 's syndrome usually follows or accompanies Wernicke's encephalopathy. If treated quickly, it may be possible to prevent the development of Korsakoff's syndrome with thiamine treatments. This treatment is not guaranteed to be effective and the thiamine needs to be administered adequately in both dose and duration. A study on Wernicke-Korsakoff's syndrome showed that with consistent thiamine treatment there were noticeable improvements in mental status after only 2–3 weeks of therapy. Thus, there is hope that with treatment Wernicke's encephalopathy will not necessarily progress to WKS.
In order to reduce the risk of developing WKS it is important to limit the intake of alcohol or drink in order to ensure that proper nutrition needs are met. A healthy diet is imperative for proper nutrition which, in combination with thiamine supplements, may reduce the chance of developing WKS. This prevention method may specifically help heavy drinkers who refuse to or are unable to quit.
Indifference to illness may have an adverse impact on a patient's engagement in neurological rehabilitation, cognitive rehabilitation and physical rehabilitation. Patients are not likely to implement rehabilitation for a condition about which they are indifferent. Although anosognosia often resolves in days to weeks after stroke, anosodiaphoria often persists. Therefore, the therapist has to be creative in their rehabilitation approach in order to maintain the interest of the patient.
Glucocorticoid medications have been known to be associated with significant side effects involving behavior and mood, regardless of previous psychiatric or cognitive condition, since the early 1950s. But cognitive side effects of steroid medications involving memory and attention are not as widely publicized and may be misdiagnosed as separate conditions, such as attention deficit disorder (ADHD or ADD) in children or early Alzheimer's disease in elderly patients.
Although the GOAT has proved useful in acute care, recent research has called attention to some of its drawbacks. The GOAT's assessment of orientation may put too much of a focus on memory as the main mechanism behind orientation. The range of cognitive and behavioral symptoms associated with PTA seems to indicate that the patient's disorientation is more than just a memory deficit. Consequently, it may be beneficial to incorporate tests of other cognitive functions, such as attention, which relate to both memory and orientation.
Another recent study compared the success of the GOAT and the Orientation Log (O-Log) in predicting rehabilitation outcomes, and found that, while the O-Log and the GOAT perform similarly as measures of PTA severity and duration, the O-Log provides a more accurate picture of rehabilitation.
While the GOAT is a useful tool, these results suggest that using alternative methods of assessing PTA may increase the amount of information available to physicians and may help in predicting rehabilitative success. The international cognitive (INCOG) expert panel has recommended the use of a validated PTA scale such as the GOAT or WPTAS for assessing PTA duration in patients with moderate-to-severe traumatic brain injury on a daily basis.
Before the development of the current tests for the assessment of post-traumatic amnesia (PTA), a retrospective method was used to determine the patient's condition, consisting of one or more interviews with the patient after the episode of PTA was judged to be over. The retrospective method, however, fails to account for the apparent lucidity of patients who are still experiencing substantial disorientation, or the finding that the recovery from post-traumatic amnesia is often characterized by the presence of "islands of memory" (short periods of clarity). A failure to take these facts into consideration may have biased retrospective methods towards underestimating the length and severity of an episode of PTA. Also, the retrospective method relies on retrospective memory, one's memory for past events, which is not very reliable in healthy individuals, and even less so in patients who have recently experienced a traumatic brain injury (TBI). Patients may also unconsciously or consciously bias their answers because they want to appear more healthy or more ill than they truly were, or because of poor insight. The retrospective method is also flawed because there is no standard measurement procedure. Although the retrospective method may provide useful subjective data, it is not a useful tool for measurement or categorization.
In order to assess an individual for agnosia, it must be verified that the individual is not suffering from a loss of sensation, and that both their language abilities and intelligence are intact. In order for an individual to be diagnosed with agnosia, they must only be experiencing a sensory deficit in a single modality. To make a diagnosis, the distinction between apperceptive and associative agnosia must be made. This distinction can be made by having the individual complete copying and matching tasks. If the individual is suffering from a form of apperceptive agnosia they will not be able to match two stimuli that are identical in appearance. In contrast, if an individual is suffering from a form of associative agnosia, they will not be able to match different examples of a stimulus. For example, an individual who has been diagnosed with associative agnosia in the visual modality would not be able to match pictures of a laptop that is open with a laptop that is closed.
Anosodiaphoria is a condition in which a person who suffers disability due to brain injury seems indifferent to the existence of their handicap. Anosodiaphoria is specifically used in association with indifference to paralysis. It is a somatosensory agnosia, or a sign of neglect syndrome. It might be specifically associated with defective functioning of the frontal lobe of the right hemisphere.
Joseph Babinski first used the term anosodiaphoria in 1914 to describe a disorder of the body schema in which patients verbally acknowledge a clinical problem (such as hemiparesis) but fail to be concerned about it. Anosodiaphoria follows a stage of anosognosia, in which there may be verbal, explicit denial of the illness, and after several days to weeks, develop the lack of emotional response. Indifference is different from denial because it implies a lack of caring on the part of the patient whom otherwise acknowledges his or her deficit.
Confabulations can also be detected using a free recall task, such as a self-narrative task. Participants are asked to recall stories (semantic or autobiographical) that are highly familiar to them. The stories recalled are encoded for errors that could be classified as distortions in memory. Distortions could include falsifying true story elements or including details from a completely different story. Errors such as these would be indicative of confabulations.
There have been assertions of a possible link between TGA and the use of statins (a class of drug used in treating cholesterol).
En bloc memory loss which is total, permanent, and irrecoverable can occur as an alcoholic "black out," usually lasting longer than an hour and up to 2–5 days.
Marijuana intoxication, Halogenated hydroxyquinolines such as Clioquinol, PDE inhibitors such as sildenafil, Digitalis and scopolamine intoxication, and general anaesthesia have been reported with TGA.