Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A combination of medical tests are used to diagnosis kniest dysplasia. These tests can include:
- Computer Tomography Scan(CT scan) - This test uses multiple images taken at different angles to produce a cross-sectional image of the body.
- Magnetic Resonance Imaging (MRI) - This technique proves detailed images of the body by using magnetic fields and radio waves.
- EOS Imaging - EOS imaging provides information on how musculoskeletal system interacts with the joints. The 3D image is scanned while the patient is standing and allows the physician to view the natural, weight-bearing posture.
- X-rays - X-ray images will allow the physician to have a closer look on whether or not the bones are growing abnormally.
The images taken will help to identify any bone anomalies. Two key features to look for in a patient with kniest dysplasia is the presence of dumb-bell shaped femur bones and coronal clefts in the vertebrae. Other features to look for include:
- Platyspondyly (flat vertebral bodies)
- Kyphoscoliosis (abnormal rounding of the back and lateral curvature of the spine)
- Abnormal growth of epiphyses, metaphyses, and diaphysis
- Short tubular bones
- Narrowed joint spaces
Genetic Testing - A genetic sample may be taken in order to closely look at the patient's DNA. Finding an error in the COL2A1 gene will help identify the condition as a type II chondroldysplasia.
Different features of the dysostosis are significant. Radiological imaging helps confirm the diagnosis. During gestation (pregnancy), clavicular size can be calculated using available nomograms. Wormian bones can sometimes be observed in the skull.
Diagnosis of CCD spectrum disorder is established in an individual with typical clinical and radiographic findings and/or by the identification of a heterozygous pathogenic variant in RUNX2 (CBFA1).
Ischiopatellar dysplasia is usually identified through radiographic evidence since its characteristic changes are most notable in radiographic tests that indicate delayed boneage or absent ossification. A full skeletal survey should be performed on any patient that has an absent or hypoplastic patellae since they could potentially have ischiopatellar dysplasia. Magnetic resonance imaging (MRI) is especially helpful in the diagnosis of ischiopatellar syndrome and is recommended when an individual affected by ischiopatellar dysplasia has a traumatic injury to the knee.
The DDx for this condition includes metopic synostosis, as well as Lambdoida synostosis.
X-Ray
Bubbly lytic lesion / Ground glass
Imaging tests. Computerized tomography or magnetic resonance imaging scans may be used to determine how extensively your bones are affected.
Bone scan. This test uses radioactive tracers, which are injected into your bloodstream. The damaged parts of your bones take up more of the tracers, which show up more brightly on the scan.
Biopsy. This test uses a hollow needle to remove a small piece of the affected bone for laboratory analysis.
Achondroplasia can be detected before birth by prenatal ultrasound. A DNA test can be performed before birth to detect homozygosity, wherein two copies of the mutant gene are inherited, a lethal condition leading to stillbirths. Clinical features include megalocephaly, short limbs, prominent forehead, thoracolumbar kyphosis and mid-face hypoplasia. Complications like dental malocclusion, hydrocephalus and repeated otitis media can be observed. The risk of death in infancy is increased due to the likelihood of compression of the spinal cord with or without upper airway obstruction.
The diagnosis of Jackson–Weiss syndrome is done via the following:
- Genetic testing
- Clinical presentation
Laboratory testing reveals multiple mutations of HCS. Two genetic variants result in sporadic HCS symptoms, which are HCS-02 and HCS-03. These mutations produce symptoms that come and go, but have been present "de novo". HCS-03 was identified as the variant that is passed through afflicted family members and presents symptoms throughout the lifetime of the individual. All variants of HCS lead to the same premature termination of PEST sequences which compromise normal function of "NOTCH2". "NOTCH" has four different receptors, which have an affinity for similar ligands. They are classified as single-pass transmembrane receptors.
A skeletal survey is useful to confirm the diagnosis of achondroplasia. The skull is large, with a narrow foramen magnum, and relatively small skull base. The vertebral bodies are short and flattened with relatively large intervertebral disk height, and there is congenitally narrowed spinal canal. The iliac wings are small and squared, with a narrow sciatic notch and horizontal acetabular roof. The tubular bones are short and thick with metaphyseal cupping and flaring and irregular growth plates. Fibular overgrowth is present. The hand is broad with short metacarpals and phalanges, and a trident configuration. The ribs are short with cupped anterior ends. If the radiographic features are not classic, a search for a different diagnosis should be entertained. Because of the extremely deformed bone structure, people with achondroplasia are often "double jointed".
The diagnosis can be made by fetal ultrasound by progressive discordance between the femur length and biparietal diameter by age. The trident hand configuration can be seen if the fingers are fully extended."
Another distinct characteristic of the syndrome is thoracolumbar gibbus in infancy.
The disorder is progressive, with the ultimate severity of symptoms often depending on age of onset. In severe cases amputation has been performed when conservative measures such as physical therapy and regional anesthetics have been ineffective.
A clinical diagnosis of SCS can be verified by testing the TWIST1 gene (only gene in which mutations are known to cause SCS) for mutations using DNA analysis, such as sequence analysis, deletion/duplication analysis, and cytogenetics/ FISH analysis. Sequence analysis of exon 1 (TWIST1 coding region) provides a good method for detecting the frequency of mutations in the TWIST1 gene. These mutations include nonsense, missense, splice site mutation, and intragenic deletions/insertions. Deletion/duplication analysis identifies mutations in the TWIST1 gene that are not readily detected by sequence analysis. Common methods include PCR, multiplex ligation-dependent probe amplification (MLPA), and chromosomal microarray (CMA). Cytogenetic/FISH analysis attaches fluorescently labels DNA markers to a denatured chromosome and is then examined under fluorescent lighting, which reveals mutations caused by translocations or inversions involving 7p21. Occasionally, individuals with SCS have a chromosome translocation, inversion, or ring chromosome 7 involving 7p21 resulting in atypical findings, such as, increased developmental delay. Individuals with SCS, typically have normal brain functioning and rarely have mental impairments. For this reason, if an individual has both SCS and mental retardation, then they should have their TWIST1 gene screened more carefully because this is not a normal trait of SCS. Cytogenetic testing and direct gene testing can also be used to study gene/chromosome defects. Cytogenetic testing is the study of chromosomes to detect gains or losses of chromosomes or chromosome segments using fluorescent in situ hybridization (FISH) and/or comparative genomic hybridization (CGH). Direct gene testing uses blood, hair, skin, amniotic fluid, or other tissues in order to find genetic disorders. Direct gene testing can determine whether an individual has SCS by testing the individual's blood for mutations in the TWIST1 gene.
Because kniest dysplasia can affect various body systems, treatments can vary between non-surgical and surgical treatment. Patients will be monitored over time, and treatments will be provided based on the complications that arise.
The term thanatophoric is Greek for "death bearing". Children with this condition are usually stillborn or die shortly after birth from respiratory failure, however a small number of individuals have survived into childhood and a very few beyond. Survivors have difficulty breathing on their own and require respiratory support such as high flow oxygen through a canula or ventilator support via tracheostomy. There may also be evidence of spinal stenosis and seizures.
The oldest known living TD survivor is a 29-year-old female. One male lived to be 26 years old. Another male lived to age 20. TD survivor, Chrisopher Álvarez, 18, is Colombian living in New York. Two children with TD aged 10 and 12, a male and a female, are known in Germany. There is also a 6-year-old male living with TD and two 1-year old males.
The diagnosis of Muenke syndrome is suspected bases on abnormal skull shape and a diagnosis of coronal craniosynostosis. In 2006, Agochukwu and her colleagues concluded that “A distinct Muenke syndrome phenotype includes: uni or bilateral coronal synostosis, midface hypoplasia, broad toes, and brachydactyly.” Due to phenotypic overlap and/or mild phenotypes, clinical differentiation of this syndrome may be difficult. The suspected diagnosis is confirmed by a blood test to check for gene mutation. To establish the extent of disease in an individual diagnosed with Muenke syndrome, various evaluations are recommended.
The main diagnostic tools for evaluating FND are X-rays and CT-scans of the skull. These tools could display any possible intracranial pathology in FND. For example, CT can be used to reveal widening of nasal bones. Diagnostics are mainly used before reconstructive surgery, for proper planning and preparation.
Prenatally, various features of FND (such as hypertelorism) can be recognized using ultrasound techniques. However, only three cases of FND have been diagnosed based on a prenatal ultrasound.
Other conditions may also show symptoms of FND. For example, there are other syndromes that also represent with hypertelorism. Furthermore, disorders like an intracranial cyst can affect the frontonasal region, which can lead to symptoms similar to FND. Therefore, other options should always be considered in the differential diagnosis.
Several studies have reported that life expectancy appears to be normal for people with CCD.
Up until recently, experts frequently disagreed on whether a patient had SCS, Crouzon syndrome, isolated craniosynostosis, or some other disease because the symptoms are so closely related, they literally had no way of differentiating between all of them. However, we now have direct gene testing, which allows for a more definitive diagnosis because it allows them to be differentiated from each other based on which gene is mutated in each condition. The following is a list of conditions commonly confused/misdiagnosed for SCS, some of their symptoms, and which mutated gene each contains:
Diagnosis of Crouzon syndrome usually can occur at birth by assessing the signs and symptoms of the baby. Further analysis, including radiographs, magnetic resonance imaging (MRI) scans, genetic testing, X-rays and CT scans can be used to confirm the diagnosis of Crouzon syndrome.
Diagnosis is based on clinical findings.
'Clinical findings'
- Profound congenital sensorineural deafness is present
- CT scan or MRI of the inner ear shows no recognizable structure in the inner ear.
- As michel's aplasia is associated with LAMM syndrome there will be Microtia and microdontia present(small sized teeth).
Molecular genetic Testing
1. "FGF3" is the only gene, whose mutation can cause congenital deafness with Michel's aplasia, microdontia and microtia
Carrier testing for at-risk relatives requires identification of mutations which are responsible for occurrence of disease in the family.
Early journal reports of boomerang dysplasia suggested X-linked recessive inheritance, based on observation and family history. It was later discovered, however, that the disorder is actually caused by a genetic mutation fitting an autosomal dominant genetic profile.
Autosomal dominant inheritance indicates that the defective gene responsible for a disorder is located on an autosome, and only one copy of the gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
Boomerang dysplasia, although an autosomal dominant disorder, is "not" inherited because those afflicted do not live beyond infancy. They cannot pass the gene to the next generation.
Osteogenesis imperfecta is a rare condition in which bones break easily. There are multiple genetic mutations in different genes for collagen that may result in this condition. It can be treated with some drugs to promote bone growth, by surgically implanting metal rods in long bones to strengthen them, and through physical therapy and medical devices to improve mobility.
The frequency of this disorder is unknown, but it is very rare. Only a few families with the condition have been reported.
There are two less common types of McGillivray syndromes are: Metopic synostosis (trigonocephaly). The metopic suture runs from your baby's nose to the sagittal suture. Premature fusion gives the scalp a triangular appearance. Another one is Lambdoid synostosis (posterior plagiocephaly). This rare form of craniosynostosis involves the lambdoid suture, which runs across the skull near the back of the head. It may cause flattening of your baby's head on the affected side. A misshapen head doesn't always indicate craniosynostosis. For example, if the back of your baby's head appears flattened, it could be the result of birth trauma or your baby's spending too much time on his or her back. This condition is sometimes treated with a custom-fit helmet that helps mold your baby's head back into a normal position.
Since about 2002, some patients with this disorder have been offered drug therapy with bisphosphonates (a class of osteoporosis drugs) to treat problems with bone resorption associated with the bone breakdown and skeletal malformations that characterize this disorder. Brand names include Actonel (risedronate/alendronate), made by Merck Pharmaceuticals. Other drugs include Pamidronate, made by Novartis and Strontium Ranelate, made by Eli Lilly. However, for more progressive cases, surgery and bone grafting are necessary.
Prognosis is poor. Previous research suggested a 100% mortality rate for those with acrania. This disease is rare, occurring in 1 in 20,000 live births.
In order to better manage an acrania diagnosis, early detection is of extreme importance so that actions may be taken to help the mother and child. Families may choose either to terminate the pregnancy, or to carry the child to term. Acrania may cause a fetus to spontaneously abort before reaching term.