Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The Düsseldorf score stratifies cases using four categories, giving one point for each; bone marrow blasts ≥5%, LDH >200U/L, haemoglobin ≤9g/dL and a platelet count ≤100,000/uL. A score of 0 indicates a low risk group' 1-2 indicates an intermediate risk group and 3-4 indicates a high risk group. The cumulative 2 year survival of scores 0, 1-2 and 3-4 is 91%, 52% and 9%; and risk of AML transformation is 0%, 19% and 54% respectively.
A new method developed using data from the M.D. Anderson Cancer Center found that a haemoglobin level of 2.5 x 10/L, >0% immature myeloid cells, >10% bone marrow blasts causes a reduced overall survival. This data allows cases of CMML to be stratified into low, intermediate-1, intermediate-2 and high risk groups. These groups have median survival times of 24, 15, 8 and 5 months respectively.
The majority (90%) of cases have not had detectable cytogenetic abnormalities. Most importantly, the Philadelphia chromosome and other BCR/ABL fusion genes are not detected.
The 5 year survival has been noted as 89% in at least one study from France of 201 patients with T-LGL leukemia.
Most patients with "ETV6-ACSL6"-related disease present with findings similar to eosinophilia, hypereosinophila, or chronic eosinophilic leukemia; at least 4 cases presented with eosinophilia plus findings of the red blood cell neoplasm, polycythemia vera; three cases resembled acute myelogenous leukemia; and one case presented with findings of a combined Myelodysplastic syndrome/myeloproliferative neoplasm. Best treatments for "ETV6-ACSL6"-related disease are unclear. Patients with the polycythemia vera form of the disease have been treated by reducing the circulating red blood cell load by phlebotomy or suppressing red blood cell formation using hydroxyurea. Individual case studies report that "ETV6-ACSL6"-associated disease is insensitive to tyrosine kinase inhibitors. Best treatment currently available, therefore, may involve chemotherapy and bone marrow transplantion.
Pralatrexate is one compound currently under investigations for the treatment of PTCL.
No distinct immunophenotype abnormality for CNL has been described.
See OHSU 2013 findings of gene CSF3R, mutation p. T6181
Clonal rearrangements of the T-cell receptor (TCR) genes are a necessary condition for the diagnosis of this disease. The gene for the β chain of the TCR is found to be rearranged more often than the γ chain. of the TCR.
Criteria for the clinically defined diagnosis of lymphocyte-variant hypereosinophilia have not been strictly set forth. Diagnosis must first rule out other causes of eosinophilia and hypereosinophilia, such as those due to allergies, drug reactions, infestations, and autoimmune diseases as well as those associated with eosinophilic leukemia, clonal eosinophilia, systemic mastocytosis, and other malignancies (see causes of eosinophilia). Criteria for the diagnosis include findings of: a) long term hypereosinophila (i.e. eosinophil blood counts >1,500/microliter) plus physical findings and symptoms associated with the disease; b) bone marrow analysis showing abnormally high levels of eosinophils; c) elevated serum levels of Immunoglobulin E, other immunoglobulins, and CCL17; d) eosinophil infiltrates in afflicted tissues; e) increased numbers of blood and/or bone marrow T cells bearing abnormal immunophenotype cluster of differentiation markers as defined by fluorescence-activated cell sorting (see above section on Pathogenesis); f) abnormal T cell receptor arrangements as defined by polymerase chain reaction methods (see above section on Pathogenesis); and g) evidence of excessive IL-5 secretion by lymphocytes (see above section on Pathogenesis). In many clinical settings, however, studies on the T cell receptor and IL-5 are not available and therefore not routine parts of the diagnostic work-up or criteria for the disease. The finding of T cells bearing abnormal immunophenotype cluster of differentiation markers is critical to making the diagnosis.
Median survival is about 9 months.
Autologous stem cell transplantation has been used in treatment.
Lymphocyte-variant hypereosinophilia usually takes a benign and indolent course. Long term treatment with corticosteroids lowers blood eosinophil levels as well as suppresses and prevents complications of the disease in >80% of cases. However, signs and symptoms of the disease recur in virtually all cases if corticosteroid dosages are tapered in order to reduce the many adverse side effects of corticosteroids. Alternate treatments used to treat corticosteroid resistant disease or for use as corticosteroid-sparing substitutes include interferon-α or its analog, Peginterferon alfa-2a, Mepolizumab (an antibody directed against IL-5), Ciclosporin (an Immunosuppressive drug), imatinib (an inhibitor of tyrosine kinases; numerous tyrosine kinase cell signaling proteins are responsible for the growth and proliferation of eosinophils {see clonal eosinophilia}), methotrexate and Hydroxycarbamide (both are chemotherapy and immunosuppressant drugs), and Alemtuzumab (a antibody that binds to the CD52 antigen on mature lymphocytes thereby marking them for destruction by the body). The few patients who have been treated with these alternate drugs have exhibited good responses in the majority of instances. Reslizumab, a newly developed antibody directed against interleukin 5 that has been successfully used to treat 4 patients with the hypereosinophilic syndrome, may also be of use for lymphocyte-variant eosinophilia. Patients suffering minimal or no disease complications have gone untreated.
In 10% to 25% of patients, mostly 3 to 10 years after initical diagnosis, the indolent course of lymphocyte-variant hypereosinophilia changes. Patients exhibit rapid increases in lymphadenopathy, spleen size, and blood cell numbers, some cells of which take on the appearance of immature and/or malignant cells. Their disease soon thereafter escalates to an angioimmunoblastic T-cell lymphoma, peripheral T cell lymphoma, Anaplastic large-cell lymphoma (which unlike most lymphomas of this type is Anaplastic lymphoma kinase-negative), or Cutaneous T cell lymphoma. The malignantly transformed disease is aggressive and has a poor prognosis. Recommended treatment includes chemotherapy with Fludarabine, Cladribine, or the CHOP combination of drugs followed by bone marrow transplantation.
Several other illnesses can present with a monoclonal gammopathy, and the monoclonal protein may be the first discovery before a formal diagnosis is made:
Lymphocyte-variant hypereosinophilia is a rare disease in which eosinophilia is caused by aberrant T cell lymphocytes which secrete cytokines (e.g. interleukin-5) that stimulate the proliferation of eosinophil precursor cells. The disease, which occasionally proceeds to a malignant lymphocytic phase, clearly reflects a clonal disturbance in lymphocytes, not eosinophils, and therefore is not a clonal hypereosinophilia. Similar non-clonal eosinophilia due to eosinophil precursor cell stimulation by clonal malignant cells is sometimes seen in cases of Hodgkin disease, B-cell lymphoma, T-cell lymphomas, T cell leukemias, and Langerhans cell histiocytosis. Other hematological diseases are associated with eosinophilia but regarded as clonal eosinophilia associated with a more important clonal malignancy in another cell type. For example, eosinophilia occurs in 20% to 30% of patients with systemic mastocytosis. Also referred to as SM-eo (systemic mastocytosis with eosinophilia) or SM-SEL (systemic mastocytosis with chronic eosinophilic leukemia), this disease's clonal eosinophils bear the same driving mutation, D816V in the"KIT" gene, as the clonal mast cells.
Leukemic cells are invariably present in samples of peripheral blood to a variable extent. Pancytopenia (anemia, neutropenia, thrombocytopenia) is commonly seen as well.
Bone marrow biopsy shows abnormal megakaryocytes, macrocytic erythropoiesis, and defects in neutrophil production and fibrosis of the marrow (myelofibrosis).
Clinically patients present with reduction in the count of all blood cells (pancytopenia), a very few blasts in the peripheral blood and no or little spleen enlargement (splenomegaly).
Cells are usually CD34 positive.
The protein electrophoresis test should be repeated annually, and if there is any concern for a rise in the level of monoclonal protein, then prompt referral to a hematologist is required. The hematologist, when first evaluating a case of MGUS, will usually perform a skeletal survey (X-rays of the proximal skeleton), check the blood for hypercalcemia and deterioration in renal function, check the urine for Bence Jones protein and perform a bone marrow biopsy. If none of these tests are abnormal, a patient with MGUS is followed up once every 6 months to a year with a blood test (serum protein electrophoresis). Although patients with MGUS have sometimes been reported to suffer from Small Fiber Neuropathy in monoclonal gammopathy of undetermined significance:a debilitating condition which causes bizarre sensory problems to painful sensory problems. peripheral neuropathy, no treatment is indicated.
While the bone marrow is commonly involved, the detection of the neoplastic infiltrate may be difficult due to diffuse, interstitial pattern. Immunohistochemistry can aid in the detection of this lymphoma.
Diagnosis is by complete blood count (CBC). However, in some cases, a more accurate absolute eosinophil count may be needed. Medical history is taken, with emphasis on travel, allergies and drug use. Specific test for causative conditions are performed, often including chest x-ray, urinalysis, liver and kidney function tests, and serologic tests for parasitic and connective tissue diseases. The stool is often examined for traces of parasites (i.e. eggs, larvae, etc.) though a negative test does not rule out parasitic infection; for example, trichinosis requires a muscle biopsy. Elevated serum B or low white blood cell alkaline phosphatase, or leukocytic abnormalities in a peripheral smear indicates a disorder of myeloproliferation. In cases of idiopathic eosinophilia, the patient is followed for complications. A brief trial of corticosteroids can be diagnostic for allergic causes, as the eosinophilia should resolve with suppression of the immune over-response. Neoplastic disorders are diagnosed through the usual methods, such as bone marrow aspiration and biopsy for the leukemias, MRI/CT to look for solid tumors, and tests for serum LDH and other tumor markers.
The European Medicines Agency (EMA) estimated the prevalence of HES at the time of granting orphan drug designation for HES in 2004 at 1.5 in 100,000 people, corresponding to a current prevalence of about 8,000 in the EU, 5,000 in the U.S., and 2,000 in Japan.
Patients who lack chronic heart failure and those who respond well to Prednisone or a similar drug have a good prognosis. However, the mortality rate rises in patients with anaemia, chromosomal abnormalities or a very high white blood cell count.
In the heart, there are two forms of the hypereosinophilic syndrome, endomyocardial fibrosis and Loeffler's endocarditis.
- Endomyocardial fibrosis (also known as Davies disease) is seen in tropical areas.
- Loeffler's endocarditis does not have any geographic predisposition.
In addition to tests corresponding to the above findings (such as EMG for neuropathy, CT scan, bone marrow biopsy to detect clonal plasma cells, plasma or serum protein electrophoresis to myeloma proteins, other tests can give abnormal results supporting the diagnosis of POEMS syndrome. These included raised blood levels of VEGF, thrombocytes, and/or erythrocyte parameters.
The immunophenotype for hepatosplenic T-cell lymphoma is a post-thymic, immature T-cell.
Patients diagnosed as having Castleman disease but also exhibiting many of the symptoms and signs of POEMS syndrome but lacking evidence of a peripheral neuropathy and/or clonal plasma cells should not be diagnosed as having POEMS syndrome. They are better classified as having Castleman disease variant of POEMS syndrome. These patients may exhibit high blood levels of the interleukin-6 cytokine and have an inferior overall survival compared to POEMS syndrome patients. Treatment of patients with this POEMS syndrome variant who have evidence of bone lesions and/or myeloma proteins are the same as those for POEMS syndrome patients. In the absence of these features, treatment with rituximab, a monoclonal antibody preparation directed against B cells bearing the CD20 antigen, or siltuximab, a monoclonal antibody preparation directed against interleukin-6, may be justified.
Familial eosinophilia is a rare congenital disorder characterized by the presence of sustained elevations in blood eosinophil levels that reach ranges diagnostic of eosinophilia or, far more commonly, hypereosinophilia. It is an autosomal dominant disorder in which genetic linkage gene mapping family studies localize the gene responsible for it to chromosome 5 at position q31-q33, between markers D5S642 and D5S816. This region contains a cytokine gene cluster which includes three genes whose protein products function in regulating the development and proliferation of eosinophils viz., interleukin 3, interleukin 5, and colony stimulating factor 2. However, no functional sequence genetic polylmophisms are found within the promoter, exons, or introns, of these genes or within the common gene enhancer for interleukin 3 or colony stimulating factor 2. This suggests that the primary defect in familial eosinophilia is not a mutation in one of these genes but rather in another gene within this chromosome area. Clinical manifestations and tissue destruction related to the eosinophilia in this disorder are uncommon: familial eosinophilia typically has a benign phenotype compared to other congenital and acquired eosinophilic diseases.
Multiagent chemotherapy is recommended, but the preferred regimen is controversial, as is consolidative radiotherapy.