Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There is no one definitive test for ideomotor apraxia; there are several that are used clinically to make an ideomotor apraxia diagnosis. The criteria for a diagnosis are not entirely conserved among clinicians, for apraxia in general or distinguishing subtypes. Almost all the tests laid out here that enable a diagnosis of ideomotor apraxia share a common feature: assessment of the ability to imitate gestures. A test developed by Georg Goldenberg uses imitation assessment of 10 gestures. The tester demonstrates the gesture to the patient and rates him on how whether the gesture was correctly imitated. If the first attempt to imitate the gesture was unsuccessful, the gesture is presented a second time; a higher score is given for correct imitation on the first trial, then for the second, and the lowest score is for not correctly imitating the gesture. The gestures used here are all meaningless, such as placing the hand flat on the top of the head or flat outward with the fingers towards the ear. This test is specifically designed for ideomotor apraxia. The main variation from this is in the type and number of gestures used. One test uses twenty-four movements with three trials for each and a trial-based scoring system similar to the Goldenberg protocol. The gestures here are also copied by the patient from the tester and are divided into finger movements, e.g. making a scissor movement with the forefinger and middle finger, and hand and arm movements, e.g. doing a salute. This protocol combines meaningful and meaningless gestures. Another test uses five meaningful gestures, such as waving goodbye or scratching your head and five meaningless gestures. Additional differences in this test are a verbal command to initiate the movement and it distinguishes between accurate performance and inaccurate but recognizable performance. One test utilizes tools, including a hammer and a key, with both a verbal command to use the tools and the patient copying the tester's demonstrated use of the tools. These tests have been shown to be individually unreliable, with considerable variability between the diagnoses delivered by each. If a battery of tests is used, however, the reliability and validity may be improved. It is also highly advisable to include assessments of how the patient performs activities in daily life. One of the newer tests that has been developed may provide greater reliability without relying on a multitude of tests. It combines three types of tool use with imitation of gestures. The tool use section includes having the patient pantomime use with no tool present, with visual contact with the tool, and finally with tactile contact with the tool. This test screens for ideational and ideomotor apraxia, with the second portion aimed specifically at ideomotor apraxia. One study showed great potential for this test, but further studies are needed to reproduce these results before this can be said with confidence. This disorder often occurs with other degenerative neurological disorders such as Parkinson's disease and Alzheimer's Disease. These comorbidities can make it difficult to pick out the specific features of ideomotor apraxia. The important point in distinguishing ideomotor apraxia is that basic motor control is intact; it is a high level dysfunction involving tool use and gesturing. Additionally, clinicians must be careful to exclude aphasia as a possible diagnosis, as, in the tests involving verbal command, an aphasic patient could fail to perform a task properly because they do not understand what the directions are.
Although qualitative and quantitative studies exist, there is little consensus on the proper method to assess for apraxia. The criticisms of past methods include failure to meet standard psychometric properties as well as research-specific designs that translate poorly to non-research use.
The Test to Measure Upper Limb Apraxia (TULIA) is one method of determining upper limb apraxia through the qualitative and quantitative assessment of gesture production. In contrast to previous publications on apraxic assessment, the reliability and validity of TULIA was thoroughly investigated. The TULIA consists of subtests for the imitation and pantomime of non-symbolic (“put your index finger on top of your nose”), intransitive (“wave goodbye”) and transitive (“show me how to use a hammer”) gestures. Discrimination (differentiating between well- and poorly performed tasks) and recognition (indicating which object corresponds to a pantomimed gesture) tasks are also often tested for a full apraxia evaluation.
However, there may not be a strong correlation between formal test results and actual performance in everyday functioning or activities of daily living (ADLs). A comprehensive assessment of apraxia should include formal testing, standardized measurements of ADLs, observation of daily routines, self-report questionnaires and targeted interviews with the patients and their relatives.
As stated above, apraxia should not be confused with aphasia; however, they frequently occur together. It has been stated that apraxia is so often accompanied by aphasia that many believe that if a person displays AOS; it should be assumed that the patient also has some level of aphasia.
Psycholinguistics pertain to the psychological and neurobiological components that allow humans to acquire, utilize, comprehend, and produce language. The tests most commonly used for psycholinguistic testing include the Dutch version of , syntactic comprehension test, and the Token test. Psycholinguistics allow physicians to narrow down and rule out other disorders that may be similar to FCMS when diagnosing a patient.
Neuropsychology is the study of neurobiology and psychology. Neuropsychological tests are utilized for the purpose of observing an individuals’ abilities in cognitive functioning, reasoning, and memories. The tests most commonly used for neuropsychological testing include WAIS-III, Stroop test, Bourdon Wiersma test, and the Rey-Osterrieth complex figure test. These tests allow physicians to evaluate the degree to which the bilateral lesions in the operculum have been affected, and allow for the determination of proper treatment.
Developmental Verbal Dyspraxia can be diagnosed by a speech language pathologist (SLP) through specific exams that measure oral mechanisms of speech. The oral mechanisms exam involves tasks such as pursing lips, blowing, licking lips, elevating the tongue, and also involves an examination of the mouth. A complete exam also involves observation of the patient eating and talking. Tests such as the Kaufman Speech Praxis test, a more formal examination, are also used in diagnosis.
A differential diagnosis of DVD/CAS is often not possible for children under the age of 2 years old. Even when children are between 2–3 years, a clear diagnosis cannot always occur, because at this age, they may still be unable to focus on, or cooperate with, diagnostic testing.
Expressive aphasia is classified as non-fluent aphasia, as opposed to fluent aphasia. Diagnosis is done on a case by case basis, as lesions often affect the surrounding cortex and deficits are highly variable among patients with aphasia.
A physician is typically the first person to recognize aphasia in a patient who is being treated for damage to the brain. Routine processes for determining the presence and location of lesion in the brain include Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scans. The physician will complete a brief assessment of the patient's ability to understand and produce language. For further diagnostic testing, the physician will refer the patient to a speech-language pathologist, who will complete a comprehensive evaluation.
In order to diagnose a patient who is suffering from Broca’s aphasia, there are certain commonly used tests and procedures. The Western Aphasia Battery (WAB) classifies individuals based on their scores on the subtests; spontaneous speech, auditory comprehension, repetition, and naming. The Boston Diagnostic Aphasia Examination (BDAE) can inform users what specific type of aphasia they may have, infer the location of lesion, and assess current language abilities. The Porch Index of Communication Ability (PICA) can predict potential recovery outcomes of the patients with aphasia. Quality of life measurement is also an important assessment tool. Tests such as the Assessment for Living with Aphasia (ALA) and the Satisfaction with Life Scale (SWLS) allow for therapists to target skills that are important and meaningful for the individual.
In addition to formal assessments, patient and family interviews are valid and important sources of information. The patient’s previous hobbies, interests, personality, and occupation are all factors that will not only impact therapy but may motivate them throughout the recovery process. Patient interviews and observations allow professionals to learn the priorities of the patient and family and determine what the patient hopes to regain in therapy. Observations of the patient may also be beneficial to determine where to begin treatment. The current behaviors and interactions of the patient will provide the therapist with more insight about the client and his or her individual needs. Other information about the patient can be retrieved from medical records, patient referrals from physicians, and the nursing staff.
In non-speaking patients who use manual languages, diagnosis is often based on interviews from the patient's acquaintances, noting the differences in sign production pre- and post- damage to the brain. Many of these patients will also begin to rely on non-linguistic gestures to communicate, rather than signing since their language production is hindered.
Ideational apraxia is a difficult disorder to diagnose. That is because the majority of individuals who have this disorder almost always have some other type of dysfunction such as agnosia or aphasia. The tests used to make an IA diagnosis can range from easy single object tasks to complex multiple object tasks. When being tested a patient may be asked to view twenty objects. They then have to demonstrate the use of each single object following three different ways of presenting the stimuli. The patient must then perform complex test where the examiner describes a task such as making coffee and the patient must show the sequential steps that makes a cup of coffee. The patients are then scored on how many errors are seen by the examiner. The errors of the patients in performing the MOT were scored according to a set of criteria partly derived from De Renzi and Lucchelli.
Given the complexity of the medical problems facing ideomotor apraxia patients, as they are usually suffering from a multitude of other problems, it is difficult to ascertain the impact that it has on their ability to function independently. Deficits due to Parkinson's or Alzheimer's disease could very well be sufficient to mask or make irrelevant difficulties arising from the apraxia. Some studies have shown ideomotor apraxia to independently diminish the patient's ability to function on their own. The general consensus seems to be that ideomotor apraxia does have a negative impact on independence in that it can reduce an individual's ability to manipulate objects, as well as diminishing the capacity for mechanical problem solving, owing to the inability to access information about how familiar parts of the unfamiliar system function. A small subset of patients has been known to spontaneously recover from apraxia; this is rare, however. One possible hope is the phenomenon of hemispheric shift, where functions normally performed by one hemisphere can shift to the other in the event that the first is damaged. This seems to necessitate, however, that some portion of the function is associated with the other hemisphere to begin with. There is dispute over whether the right hemisphere of the cortex is involved at all in the praxis system, as some evidence from patients with severed corpus callosums indicates it may not be.
Although there is little that can be done to substantially reverse the effects of ideomotor apraxia, Occupational Therapy can be effective in helping patients regain some functional control. Sharing the same approach in treating ideational apraxia, this is achieved by breaking a daily task (e.g. combing hair) into separate components and teaching each distinct component individually. With ample repetition, proficiency in these movements can be acquired and should eventually be combined to create a single pattern of movement.
The prognosis for individuals with apraxia varies. With therapy, some patients improve significantly, while others may show very little improvement. Some individuals with apraxia may benefit from the use of a communication aid.
However, many people with apraxia are no longer able to be independent. Those with limb-kinetic and/or gait apraxia should avoid activities in which they might injure themselves or others.
Occupational therapy, physical therapy, and play therapy may be considered as other references to support patients with apraxia. These team members could work along with the SLP to provide the best therapy for people with apraxia. However, because people with limb apraxia may have trouble directing their motor movements, occupational therapy for stroke or other brain injury can be difficult.
No medication has been shown useful for treating apraxia.
Two classes of errors are used to develop a diagnosis:
Class I: Sequence errors
- Action addition (AA) is a meaningful action step that is not necessary for accomplishing the goal of the MOT action (e.g., removing the filter of the orange squeezer in order to pour the liquid);
- Action anticipation (A) is an anticipation of an action that would normally be performed later in the action sequence (e.g., blowing the match out before using it);
- Step omission (SO) is an omission of a step of the multiple-actions sequence (e.g., inserting the filter in the coffee machine without pouring some water);
- Perseveration (P) is a repetition of an action step previously performed in the action sequence.
Class II: Conceptual errors
- Misuse (Mis) errors that can be differentiated into two further types:
1. (Mis1) the first type of misuse involves a well-performed action that is appropriate to an object different from the object target (e.g., hammering with a saw);
2. (Mis2) the second type involves an action that is appropriate at a superordinate level to the object at hand but is inappropriately specified at the subordinate level (e.g., cutting an orange with a knife as if it were butter).
- Mislocation (Misl) which can be further differentiated into two error subtypes:
1. (Misl1) the first type is an action that is appropriate to the object in hand but is performed in completely the wrong place (e.g., pouring some liquid from the bottle onto the table rather than into the glass);
2. (Misl2) the second type involves the correct general selection of the target object on which to operate with the source object or instrument in hand but with the exact location of the action being wrong (e.g., striking the match inside the matchbox).
- Tool omission (TO) is an omission in using an obligatory tool where the hand is used instead (e.g., opening a bottle without using a bottle opener);
- Pantomiming (Pant) is where the patient pantomime show the object should be used instead of using it;
- Perplexity (Perpl) Is a delay or hesitation in starting an action or subcomponents of an action;
- Toying(T) consists of a brief but repeated touching of an object or objects on the table.
As the examiner observes the patient for each task they mark off which errors were committed. From this criteria the examiner will be able to focus on severity of the dysfunction. It is important to express that the motor movement is not lost in patients with IA. Yet, at first glance their movements may appear to be awkward because they are unable to plan a sequence of movements with the given object.
There is no curative treatment for this condition. Supportive management is helpful.
Imaging studies have shown differing results which probably represents the heterogeneity of language problems than can occur in PNFA. However, classically atrophy of left perisylvian areas is seen.
Comprehensive meta-analyses on MRI and FDG-PET studies identified alterations in the whole left frontotemporal network for phonological and syntactical processing as the most consistent finding. Based on these imaging methods, progressive nonfluent aphasia can be regionally dissociated from the other subtypes of frontotemporal lobar degeneration, frontotemporal dementia and semantic dementia.
Currently, there is no standard treatment for expressive aphasia. Most aphasia treatment is individualized based on a patient's condition and needs as assessed by a speech language pathologist. Patients go through a period of spontaneous recovery following brain injury in which they regain a great deal of language function.
In the months following injury or stroke, most patients receive traditional treatment for a few hours per day. Among other exercises, patients practice the repetition of words and phrases. Mechanisms are also taught in traditional treatment to compensate for lost language function such as drawing and using phrases that are easier to pronounce.
Emphasis is placed on establishing a basis for communication with family and caregivers in everyday life. Treatment is individualized based on the patient's own priorities, along with the family's input.
A patient may have the option of individual or group treatment. Although less common, group treatment has been shown to have advantageous outcomes. Some types of group treatments include family counseling, maintenance groups, support groups and treatment groups.
In cases of acute AOS (stroke), spontaneous recovery may occur, in which previous speech abilities reappear on their own. All other cases of acquired AOS require a form of therapy; however the therapy varies with the individual needs of the patient. Typically, treatment involves one-on-one therapy with a speech language pathologist (SLP). For severe forms of AOS, therapy may involve multiple sessions per week, which is reduced with speech improvement. Another main theme in AOS treatment is the use of repetition in order to achieve a large amount of target utterances, or desired speech usages.
There are various treatment techniques for AOS. One technique, called the Linguistic Approach, utilizes the rules for sounds and sequences. This approach focuses on the placement of the mouth in forming speech sounds. Another type of treatment is the Motor-Programming Approach, in which the motor movements necessary for speech are practiced. This technique utilizes a great amount of repetition in order to practice the sequences and transitions that are necessary in between production of sounds.
Research about the treatment of apraxia has revealed four main categories: articulatory-kinematic, rate/rhythm control, intersystemic facilitation/reorganization treatments, and alternative/augmentative communication.
- Articulatory-kinematic treatments almost always require verbal production in order to bring about improvement of speech. One common technique for this is modeling or repetition in order to establish the desired speech behavior. Articulatory-kinematic treatments are based on the importance of patients to improve spatial and temporal aspects of speech production.
- Rate and rhythm control treatments exist to improve errors in patients’ timing of speech, a common characteristic of Apraxia. These techniques often include an external source of control like metronomic pacing, for example, in repeated speech productions.
- Intersystemic reorganization/facilitation techniques often involve physical body or limb gestural approaches to improve speech. Gestures are usually combined with verbalization. It is thought that limb gestures may improve the organization of speech production.
- Finally, alternative and augmentative communication approaches to treatment of apraxia are highly individualized for each patient. However, they often involve a "comprehensive communication system" that may include "speech, a communication book aid, a spelling system, a drawing system, a gestural system, technologies, and informed speech partners".
One specific treatment method is referred to as PROMPT. This acronym stands for Prompts for Restructuring Oral Muscular Phonetic Targets, and takes a hands on multidimensional approach at treating speech production disorders. PROMPT therapists integrate physical-sensory, cognitive-linguistic, and social-emotional aspects of motor performance. The main focus is developing language interaction through this tactile-kinetic approach by using touch cues to facilitate the articulatory movements associated with individual phonemes, and eventually words.
One study describes the use of electropalatography (EPG) to treat a patient with severe acquired apraxia of speech. EPG is a computer-based tool for assessment and treatment of speech motor issues. The program allows patients to see the placement of articulators during speech production thus aiding them in attempting to correct errors. Originally after two years of speech therapy, the patient exhibited speech motor and production problems including problems with phonation, articulation, and resonance. This study showed that EPG therapy gave the patient valuable visual feedback to clarify speech movements that had been difficult for the patient to complete when given only auditory feedback.
While many studies are still exploring the various treatment methods, a few suggestions from ASHA for treating apraxia patients include the integration of objective treatment evidence, theoretical rationale, clinical knowledge and experience, and the needs and goals of the patient
If a suspected brain injury has occurred, the patient undergoes a series of medical imaging, which could include MRI(magnetic resonance imaging) or CT (computed tomography) scan. After the diagnosis of a brain injury, a speech and language pathologist will perform a variety of tests to determine the classification of aphasia. Additionally, the Boston Assessment of Severe Aphasia (BASA) is a commonly used assessment for diagnosing aphasia. BASA is used to determine treatment plans after strokes lead to symptoms of aphasia and tests both gestural and verbal responses. Cognitive functions can be assessed using the Cognitive Test Battery for Global Aphasia (CoBaGa). The CoBaGa is an appropriate measure to assess a person with severe aphasia because it does not require verbal responses, rather manipulative answers. The CoBaGa assesses cognitive functions such as attention, executive functions, logical reasoning, memory, visual-auditory recognition, and visual-spatial ability. Van Mourik et al. conducted a study in which they assessed the cognitive abilities of people with global aphasia using the Global Aphasic Neuropsychological Battery. This test assesses attention/concentration, memory, intelligence, and visual and auditory nonverbal recognition. The results of this study helped the researchers determine there were varying levels of severity among individuals with global aphasia.
Apraxia of speech can be diagnosed by a speech language pathologist (SLP) through specific exams that measure oral mechanisms of speech. The oral mechanisms exam involves tasks such as pursing lips, blowing, licking lips, elevating the tongue, and also involves an examination of the mouth. A complete exam also involves observation of the patient eating and talking. SLPs do not agree on a specific set of characteristics that make up the apraxia of speech diagnosis, so any of the characteristics from the section above could be used to form a diagnosis. Patients may be asked to perform other daily tasks such as reading, writing, and conversing with others. In situations involving brain damage, an MRI brain scan also helps identify damaged areas of the brain.
A differential diagnosis must be used in order to rule out other similar or alternative disorders. Although disorders such as expressive aphasia, conduction aphasia, and dysarthria involve similar symptoms as apraxia of speech, the disorders must be distinguished in order to correctly treat the patients. While AOS involves the motor planning or processing stage of speech, aphasic disorders can involve other language processes.
According to Ziegler et al., this difficulty in diagnosis derives from the unknown causes and function of the disorder, making it hard to set definite parameters for AOS identification. Specifically, he explains that oral-facial apraxia, dysarthria, and aphasic phonological impairment are the three distinctly different disorders that cause individuals to display symptoms that are often similar to those of someone with AOS, and that these close relatives must be correctly ruled out by a Speech Language Pathologist before AOS can be given as a diagnosis. In this way, AOS is a diagnosis of exclusion, and is generally recognized when all other similar speech sound production disorders are eliminated.
There is no cure for DVD/CAS, but with appropriate, intensive intervention, people with the disorder can improve significantly.
DVD/CAS requires various forms of therapy which varies with the individual needs of the patient. Typically, treatment involves one-on-one therapy with a speech language pathologist (SLP). In children with DVD/CAS, consistency is a key element in treatment. Consistency in the form of communication, as well as the development and use of oral communication are extremely important in aiding a child's speech learning process.
Many therapy approaches are not supported by thorough evidence; however, the aspects of treatment that do seem to be agreed upon are the following:
- Treatment needs to be intense and highly individualized, with about 3-5 therapy sessions each week
- A maximum of 30 minutes per session is best for young children
- Principles of motor learning theory and intense speech-motor practice seem to be the most effective
- Non-speech oral motor therapy is not necessary or sufficient
- A multi-sensory approach to therapy may be beneficial: using sign language, pictures, tactile cues, visual prompts, and Augmentative and Alternative Communication (AAC) can be helpful.
Although these aspects of treatment are supported by much clinical documentation, they lack evidence from systematic research studies. In ASHA's position statement on DVD/CAS, ASHA states there is a critical need for collaborative, interdisciplinary, and programmatic research on the neural substrates, behavioral correlates, and treatment options for DVD/CAS.
Agraphia cannot be directly treated, but individuals can be rehabilitated to regain some of their previous writing abilities.
For the management of phonological agraphia, individuals are trained to memorize key words, such as a familiar name or object, that can then help them form the grapheme for that phoneme. Management of allographic agraphia can be as simple as having alphabet cards so the individual can write legibly by copying the correct letter shapes. There are few rehabilitation methods for apraxic agraphia; if the individual has considerably better hand control and movement with typing than they do with handwriting, then they can use technological devices. Texting and typing do not require the same technical movements that handwriting does; for these technological methods, only spatial location of the fingers to type is required. If copying skills are preserved in an individual with apraxic agraphia, repeated copying may help shift from the highly intentional and monitored hand movements indicative of apraxic agraphia to a more automated control.
Micrographia is a condition that can occur with the development of other disorders, such as Parkinson's disease, and is when handwriting becomes illegible because of small writing. For some individuals, a simple command to write bigger eliminates the issue.
- Anagram and Copy Treatment (ACT) uses the arrangement of component letters of target words and then repeated copying of the target word. This is similar to the CART; the main difference is that the target words for ACT are specific to the individual. Target words that are important in the life of the individual are emphasized because people with deep or global agraphias do not typically have the same memory for the words as other people with agraphia may. Writing can be even more important to these people as it can cue spoken language. ACT helps in this by facilitating the relearning of a set of personally relevant written words for use in communication.
- Copy and Recall Treatment (CART) method helps to reestablish the ability to spell specific words that are learned through repeated copying and recall of target words. CART is more likely to be successful in treating lexical agraphia when a few words are trained to mastery than when a large group of unrelated words is trained. Words chosen can be individualized to the patient, which makes treatment more personalized.
- Graphemic buffer uses the training of specific words to improve spelling. Cueing hierarchies and copy and recall method of specific words are used, to work the words into the short-term memory loop, or graphemic buffer. The segmentation of longer words into shorter syllables helps bring words into short-term memory.
- Problem solving approach is used as a self-correcting method for phonological errors. The individual sounds out the word and attempts to spell it, typically using an electronic dictionary-type device that indicates correct spelling. This method takes advantage of the preserved sound-to-letter correspondences when they are intact. This approach may improve access to spelling memory, strengthen orthographic representations, or both.
The nature of the alleged mental representations that underlie the act of pointing to target body parts have been a controversial issue. Originally, it was diagnosed as the effects of general mental deterioration or of aphasia on the task of pointing to body parts on verbal command. However, contemporary neuropsychological therapy seeks to establish the independence of autotopagnosia from other disorders. With such a general definition, a patient that presents with a dysfunction of or failure in accessing one of four mental representation systems suffers from autotopagnosia. Through observational testing, the type of mental misrepresentation of the body can be deduced: whether "semantic", "visuospatial", "somatosensory", or "motor misrepresentations". Neuropsychological tests can provide a proper diagnosis in regards to the specificity of patient’s agnosic condition.
1) Test 1: Body Part Localization: Free vision and no vision conditions
2) Test 2: On-line positioning of body vis-à-vis objects
3) Test 3: Localization of objects on the body surface
4) Test 4: Body part semantic knowledge
5) Test 5: Matching body parts: Effect of viewing angle
Speech and language therapy is typically the primary treatment for individuals with aphasia. The goal of speech and language therapy is to increase the person’s communication abilities to a level functional for daily life. Goals are chosen based on collaboration between speech language pathologists, patients, and their family/caregivers. Goals should be individualized based on the person’s aphasia symptoms and communicative needs. In 2016, Wallace et al. found the following outcomes were commonly prioritized in therapy: communication, life participation, physical and emotional well-being, normalcy, and health and support services. However, available research is inconclusive about which specific approach to speech and language therapy is most effective in treating global aphasia.
Therapy can be either group or individual. Group therapies that integrate the use of visual aids allow for enhanced social and communication-skill development. Group therapy sessions typically revolve around simple, preplanned activities or games, and aim to facilitate social communication.
One particular therapy designed specifically for treatment of aphasia is Visual Action Therapy (VAT). VAT is a non-verbal gestural output program with 3 phases and 30 total steps. The program teaches unilateral gestures as symbolic representations of real life objects. Research on the effectiveness of VAT is limited and inconclusive.
One important therapy technique includes teaching family members and caregivers strategies for more effectively communicating with their loved ones. Research offers such strategies including, simplifying sentences and using common words, gaining the person's attention before speaking, using pointing and visual cues, allowing for adequate response time, and creating a quiet environment free of distractions.
Another approach to speech and language treatment is constraint-induced language therapy (CILT). CILT involves teaching the patient to use speech in small segments but avoid using gestures and familiar words . The speech language pathologist provides positive feedback throughout and ignores any mistakes made by the patient. The intensity with which this treatment is provided has been debated in the literature. One study, performed in 2015, compared the outcomes of patients with aphasia who received CILT for either 30 hours total over 2 weeks or 30 hours distributed over 10 weeks. Results showed that both groups made significant speech and language improvements. Overall, CILT is an effective treatment at a variety of intensities.
Research supporting the efficacy of pharmacological treatments for aphasia is limited. To date, no large scale clinical trials have proven benefits of pharmacological treatment.
Articulation problems resulting from dysarthria are treated by speech language pathologists, using a variety of techniques. Techniques used depend on the effect the dysarthria has on control of the articulators. Traditional treatments target the correction of deficits in rate (of articulation), prosody (appropriate emphasis and inflection, affected e.g. by apraxia of speech, right hemisphere brain damage, etc.), intensity (loudness of the voice, affected e.g. in hypokinetic dysarthrias such as in Parkinson's), resonance (ability to alter the vocal tract and resonating spaces for correct speech sounds) and phonation (control of the vocal folds for appropriate voice quality and valving of the airway). These treatments have usually involved exercises to increase strength and control over articulator muscles (which may be flaccid and weak, or overly tight and difficult to move), and using alternate speaking techniques to increase speaker intelligibility (how well someone's speech is understood by peers). With the speech language pathologist, there are several skills that are important to learn; safe chewing and swallowing techniques, avoiding conversations when feeling tired, repeat words and syllables over and over in order to learn the proper mouth movements, and techniques to deal with the frustration while speaking. Depending on the severity of the dysarthria, another possibility includes learning how to use a computer or flip cards in order to communicate more effectively.
More recent techniques based on the principles of motor learning (PML), such as LSVT (Lee Silverman voice treatment) speech therapy and specifically LSVT may improve voice and speech function in PD. For Parkinson's, aim to retrain speech skills through building new generalised motor programs, and attach great importance to regular practice, through peer/partner support and self-management. Regularity of practice, and when to practice, are the main issues in PML treatments, as they may determine the likelihood of generalization of new motor skills, and therefore how effective a treatment is.
Augmentative and alternative communication (AAC) devices that make coping with a dysarthria easier include speech synthesis and text-based telephones. These allow people who are unintelligible, or may be in the later stages of a progressive illness, to continue to be able to communicate without the need for fully intelligible speech.
Currently, the specific causes for PPA and other degenerative brain disease similar to PPA are unknown. Autopsies have revealed a variety of brain abnormalities in people who had PPA. These autopsies, as well as imaging techniques such as CT scans, MRI, EEG, single photon emission computed tomography (SPECT), and positron emission tomography (PET), have generally revealed abnormalities to be almost exclusively in the left hemisphere.
Diagnosis may be clinical if associated with dementia and other etiologies. In cases caused by stroke, MRI will show a corresponding stroke in the inferior parietal lobule. In the acute stage, this will be bright (restricted diffusion) on the DWI sequence and dark at the corresponding area on the ADC sequence.
Due to the progressive, continuous nature of the disease, improvement over time seldom occurs in patients with PPA as it often does in patients with aphasias caused by trauma to the brain.
In terms of medical approaches to treating PPA, there are currently no drugs specifically used for patients with PPA, nor are there any specifically designed interventions for PPA. A large reason for this is the limited research that has been done on this disease. However, in some cases, patients with PPA are prescribed the same drugs Alzheimer's patients are normally prescribed.
The primary approach to treating PPA has been with behavioral treatment, with the hope that these methods can provide new ways for patients to communicate in order to compensate for their deteriorated abilities. Speech therapy can assist an individual with strategies to overcome difficulties. There are three very broad categories of therapy interventions for aphasia: restorative therapy approaches, compensatory therapy approaches, and social therapy approaches. Rapid and sustained improvement in speech and dementia in a patient with primary progressive aphasia utilizing off-label perispinal etanercept, an anti-TNF treatment strategy also used for Alzheimer's, has been reported. A video depicting the patient's improvement was published in conjunction with the print article. These findings have not been independently replicated and remain controversial.
There are currently no quantitative methods for diagnosing simultanagnosia. To establish the presence of simultanagnosic symptoms, patients are asked to describe complex visual displays, such as the commonly used "Boston Cookie Theft" picture, which is a component of the Boston Diagnostic Aphasia Examination. In the picture, the sink in the kitchen is overflowing as a boy and a girl attempt to steal cookies from the cookie jar without their mother noticing.
Patients take a clearly piecemeal approach to interpreting the scene by reporting isolated items from the image. For instance, a patient may report seeing a "boy," "stool," and a "woman." However, when asked to interpret the overall meaning of the picture, the patient fails to comprehend the global whole. Another picture used to assess visual impairments of patients with simultanagnosia is the "Telegraph Boy" picture. Upon examination of higher nervous system functions, patients display no general intellectual impairments.