Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Vaccination helps prevent bronchopneumonia, mostly against influenza viruses, adenoviruses, measles, rubella, streptococcus pneumoniae, haemophilus influenzae, diphtheria, bacillus anthracis, chickenpox, and bordetella pertussis.
Antibiotics do not help the many lower respiratory infections which are caused by parasites or viruses. While acute bronchitis often does not require antibiotic therapy, antibiotics can be given to patients with acute exacerbations of chronic bronchitis. The indications for treatment are increased dyspnoea, and an increase in the volume or purulence of the sputum. The treatment of bacterial pneumonia is selected by considering the age of the patient, the severity of the illness and the presence of underlying disease. Amoxicillin and doxycycline are suitable for many of the lower respiratory tract infections seen in general practice.
Diagnosis of FVR is usually by clinical signs, especially corneal ulceration. Definitive diagnosis can be done by direct immunofluorescence or virus isolation. However, many healthy cats are subclinical carriers of feline herpes virus, so a positive test for FHV-1 does not necessarily indicate that signs of an upper respiratory tract infection are due to FVR. Early in the course of the disease, histological analysis of cells from the tonsils, nasal tissue, or nictitating membrane (third eyelid) may show inclusion bodies (a collection of viral particles) within the nucleus of infected cells.
There is a vaccine for FHV-1 available (ATCvet code: , plus various combination vaccines), but although it limits or weakens the severity of the disease and may reduce viral shedding, it does not prevent infection with FVR. Studies have shown a duration of immunity of this vaccine to be at least three years. The use of serology to demonstrate circulating antibodies to FHV-1 has been shown to have a positive predictive value for indicating protection from this disease.
It is hard to differentiate a viral and a bacterial cause of a sore throat based on symptoms alone. Thus often a throat swab is done to rule out a bacterial cause.
The modified Centor criteria may be used to determine the management of people with pharyngitis. Based on 5 clinical criteria, it indicates the probability of a streptococcal infection.
One point is given for each of the criteria:
- Absence of a cough
- Swollen and tender cervical lymph nodes
- Temperature >
- Tonsillar exudate or swelling
- Age less than 15 (a point is subtracted if age >44)
The McIsaac criteria adds to the Centor:
- Age less than 15: add one point
- Age greater than 45: subtract one point
The Infectious Disease Society of America however recommends against empirical treatment and considers antibiotics only appropriate following positive testing. Testing is not needed in children under three as both group A strep and rheumatic fever are rare, except if they have a sibling with the disease.
Possible complications include the horse becoming a chronic carrier of the disease, asphyxia due to enlarged lymph nodes compressing the larynx or windpipe, bastard strangles (spreading to other areas of the body), pneumonia, guttural pouch filled with pus, abscesses, purpura haemorrhagica, and heart disease. The average length for the course of this disease is 23 days.
Chicken respiratory diseases are difficult to differentiate and may not be diagnosed based on respiratory signs and lesions. Other diseases such as mycoplasmosis by Mycoplasma gallisepticum (chronic respiratory disease), Newcastle disease by mesogenic strains of Newcastle diseases virus (APMV-1), avian metapneumovirus, infectious laryngotracheitis, avian infectious coryza in some stages may clinically resemble IB. Similar kidney lesions may be caused by different etiologies, including other viruses, such as infectious bursal disease virus (the cause of Gumboro disease) and toxins (for instance ochratoxins of Aspergillus ochraceus), and dehydration.
In laying hens, abnormal and reduced egg production are also observed in Egg Drop Syndrome 76 (EDS), caused by an Atadenovirus and avian metapneumovirus infections. At present, IB is more common and far more spread than EDS. The large genetic and phenotypic diversity of IBV have been resulting in common vaccination failures. In addition, new strains of IBV, not present in commercial vaccines, can cause the disease in IB vaccinated flocks. Attenuated vaccines will revert to virulence by consecutive passage in chickens in densely populated areas, and may reassort with field strains, generating potentially important variants.
Definitive diagnosis relies on viral isolation and characterization. For virus characterization, recent methodology using genomic amplification (PCR) and sequencing of products, will enable very precise description of strains, according to the oligonucleotide primers designed and target gene. Methods for IBV antigens detection may employ labelled antibodies, such as direct immunofluorescence or immunoperoxidase. Antibodies to IBV may be detected by indirect immunofluorescent antibody test, ELISA and Haemagglutination inhibition (haemagglutinating IBV produced after enzymatic treatment by phospholipase C).
Both intramuscular and intranasal vaccines are available. Isolation of new horses for 4 to 6 weeks, immediate isolation of infected horses, and disinfection of stalls, water buckets, feed troughs, and other equipment will help prevent the spread of strangles. As with any contagious disease, handwashing is a simple and effective tool.
No specific treatment is available, but antibiotics can be used to prevent secondary infections.
Vaccines are available (ATCvet codes: for the inactivated vaccine, for the live vaccine; plus various combinations).
Biosecurity protocols including adequate isolation, disinfection are important in controlling the spread of the disease.
Diagnosis is typically based on a person's signs and symptoms. The color of the sputum does not indicate if the infection is viral or bacterial. Determining the underlying organism is typically not needed. Other causes of similar symptoms include asthma, pneumonia, bronchiolitis, bronchiectasis, and COPD. A chest X-ray may be useful to detect pneumonia.
Another common sign of bronchitis is a cough which lasts ten days to three weeks. If the cough lasts a month or a year it may be chronic bronchitis. In addition to having a cough a fever may be present. Acute bronchitis is normally caused by a viral infection. Typically these infections are rhinovirus, para influenza, or influenza. No specific testing is normally needed to diagnose acute bronchitis.
The specific criteria for diagnosis of CPA are:
Chest X-rays showing one or more lung cavities. There may be a fungal ball present or not.
Symptoms lasting more than 3 months, usually including weight loss, fatigue, cough, coughing blood (haemoptysis) and breathlessness
A blood test or tissue fluid test positive for Aspergillus species
Aspergilloma
An aspergilloma is a fungal mass caused by a fungal infection with Aspergillus species that grows in either scarred lungs or in a pre-existing lung cavity, which may have been caused by a previous infection. Patients with a previous history of tuberculosis, sarcoidosis, cystic fibrosis or other lung disease are most susceptible to an aspergilloma. Aspergillomas may have no specific symptoms but in many patients there is some coughing up of blood called haemoptysis - this may be infrequent and in small quantity, but can be severe and then it requires urgent medical help.
Tests used to diagnose an aspergilloma may include:
- Chest X-ray
- Chest CT
- Sputum culture
- Bronchoscopy or bronchoscopy with lavage (BAL)
- Serum precipitins for aspergillus (blood test to detect antibodies to aspergillus)
Almost all aspergillomas are caused by "Aspergillus fumigatus". In diabetic patients it may be caused by "Aspergillus niger". It is very rarely caused by "Aspergillus flavus", "Aspergillus oryzae", "Aspergillus terreus" or "Aspergillus nidulans".
Eosinophilic pneumonia is diagnosed in one of three circumstances: when a complete blood count reveals increased eosinophils and a chest x-ray or computed tomography (CT) identifies abnormalities in the lung, when a biopsy identifies increased eosinophils in lung tissue, or when increased eosinophils are found in fluid obtained by a bronchoscopy (bronchoalveolar lavage [BAL] fluid). Association with medication or cancer is usually apparent after review of a person's medical history. Specific parasitic infections are diagnosed after examining a person's exposure to common parasites and performing laboratory tests to look for likely causes. If no underlying cause is found, a diagnosis of AEP or CEP is made based upon the following criteria. AEP is most likely with respiratory failure after an acute febrile illness of usually less than one week, changes in multiple areas and fluid in the area surrounding the lungs on a chest x-ray, and greater than 25% eosinophils on a BAL. Other typical laboratory abnormalities include an elevated white blood cell count, erythrocyte sedimentation rate, and immunoglobulin G level. Pulmonary function testing usually reveals a restrictive process with reduced diffusion capacity for carbon monoxide. CEP is most likely when the symptoms have been present for more than a month. Laboratory tests typical of CEP include increased blood eosinophils, a high erythrocyte sedimentation rate, iron deficiency anemia, and increased platelets. A chest x-ray can show abnormalities anywhere, but the most specific finding is increased shadow in the periphery of the lung, away from the heart.
Acute pharyngitis is the most common cause of a sore throat and, together with cough, it is diagnosed in more than 1.9 million people a year in the United States.
Prevention is by not smoking and avoiding other lung irritants. Frequent hand washing may also be protective. Treatment of acute bronchitis typically involves rest, paracetamol (acetaminophen), and NSAIDs to help with the fever. Cough medicine has little support for its use and is not recommended in children less than six years of age. There is tentative evidence that salbutamol may be useful in those with wheezing; however, it may result in nervousness and tremors. Antibiotics should generally not be used. An exception is when acute bronchitis is due to pertussis. Tentative evidence supports honey and pelargonium to help with symptoms. Getting plenty of rest and fluids is also often recommended.
Diagnosis can be made in several ways, encompassing a range of multi-faceted techniques:
- Isolation and detection of the virus in cell culture.
- Detection of viral antigens directly within bodily respiratory tract secretions using immunofluorescence, enzyme immunoassays or fluroimmunoassays.
- Polymerase chain reaction (PCR).
- Analysis of specific IgG antibodies showing a subsequent rise in titre following infection (using paired serum specimens).
Because of the similarity in terms of the antigenic profile between the viruses, hemagglutination assay (HA) or hemadsorption inhibition (HAdI) processes are often used. Both complement fixation, neutralisation and enzyme linked immunosorbent assays – ELISA, can also be used to aid in the process of distinguishing between viral serotypes.
This includes:
- Asthma
- Environmental allergic reaction
- Granulomatosis with polyangiitis (Wegner's syndrome)
- Allergic bronchopulmonary aspergillosis
- Churg-Strauss syndrome
- Loeffler's syndrome
- Acute eosinophilic pneumonia
- Chronic eosinophilic pneumonia (Carrington's disease)
- Polyarteritis nodosa
- Parasitic infections
- Tropical pulmonary eosinophilia
- Tuberculosis
- Fungal infection
- Sarcoidosis
- Drug reaction with eosinophilia and systemic symptoms
- Mastocytosis
- Lymphoproliferative hypereosinophilic syndrome
- Myeloproliferative hypereosinophilic syndrome
Despite decades of research, no vaccines currently exist.
Recombinant technology has however been used to target the formation of vaccines for HPIV-1, -2 and -3 and has taken the form of several live-attenuated intranasal vaccines. Two vaccines in particular were found to be immunogenic and well tolerated against HPIV-3 in phase I trials. HPIV-1 and -2 vaccine candidates remain less advanced.
Vaccine techniques which have been used against HPIVs are not limited to intranasal forms, but also viruses attenuated by cold passage, host range attenuation, chimeric construct vaccines and also introducing mutations with the help of reverse genetics to achieve attenuation.
Maternal antibodies may offer some degree of protection against HPIVs during the early stages of life via the colostrum in breast milk.
The diagnosis of DPB requires analysis of the lungs and bronchiolar tissues, which can require a lung biopsy, or the more preferred high resolution computed tomography (HRCT) scan of the lungs. The diagnostic criteria include severe inflammation in all layers of the respiratory bronchioles and lung tissue lesions that appear as nodules within the terminal and respiratory bronchioles in both lungs. The nodules in DPB appear as opaque lumps when viewed on X-rays of the lung, and can cause airway obstruction, which is evaluated by a pulmonary function test, or PFT. Lung X-rays can also reveal dilation of the bronchiolar passages, another sign of DBP. HRCT scans often show blockages of some bronchiolar passages with mucus, which is referred to as the "tree-in-bud" pattern. Hypoxemia, another sign of breathing difficulty, is revealed by measuring the oxygen and carbon dioxide content of the blood, using a blood test called arterial blood gas. Other findings observed with DPB include the proliferation of lymphocytes (white blood cells that fight infection), neutrophils, and foamy histiocytes (tissue macrophages) in the lung lining. Bacteria such as "H. influenzae" and "P. aeruginosa" are also detectable, with the latter becoming more prominent as the disease progresses. The white blood, bacterial and other cellular content of the blood can be measured by taking a complete blood count (CBC). Elevated levels of IgG and IgA (classes of immunoglobulins) may be seen, as well as the presence of rheumatoid factor (an indicator of autoimmunity). Hemagglutination, a clumping of red blood cells in response to the presence of antibodies in the blood, may also occur. Neutrophils, beta-defensins, leukotrienes, and chemokines can also be detected in bronchoalveolar lavage fluid injected then removed from the bronchiolar airways of individuals with DPB, for evaluation.
In the differential diagnosis (finding the correct diagnosis between diseases that have overlapping features) of some obstructive lung diseases, DPB is often considered. A number of DPB symptoms resemble those found with other obstructive lung diseases such as asthma, chronic bronchitis, and emphysema. Wheezing, coughing with sputum production, and shortness of breath are common symptoms in such diseases, and obstructive respiratory functional impairment is found on pulmonary function testing. Cystic fibrosis, like DPB, causes severe lung inflammation, excess mucus production, and infection; but DPB does not cause disturbances of the pancreas nor the electrolytes, as does CF, so the two diseases are different and probably unrelated. DPB is distinguished by the presence of lesions that appear on X-rays as nodules in the bronchioles of both lungs; inflammation in all tissue layers of the respiratory bronchioles; and its higher prevalence among individuals with East Asian lineage.
DPB and bronchiolitis obliterans are two forms of primary bronchiolitis. Specific overlapping features of both diseases include strong cough with large amounts of often pus-filled sputum; nodules viewable on lung X-rays in the lower bronchi and bronchiolar area; and chronic sinusitis. In DPB, the nodules are more restricted to the respiratory bronchioles, while in OB they are often found in the membranous bronchioles (the initial non-cartilaginous section of the bronchiole, that divides from the tertiary bronchus) up to the secondary bronchus. OB is a bronchiolar disease with worldwide prevalence, while DPB has more localized prevalence, predominantly in Japan. Prior to clinical recognition of DPB in recent years, it was often misdiagnosed as bronchiectasia, COPD, IPF, phthisis miliaris, sarcoidosis or alveolar cell carcinoma.
Culturing fungi from sputum is a supportive test in the diagnosis of ABPA, but is not 100% specific for ABPA as "A. fumigatus" is ubiquitous and commonly isolated from lung expectorant in other diseases. Nevertheless, between 40–60% of patients do have positive cultures depending on the number of samples taken.
Patients with single aspergillomas generally do well with surgery to remove the aspergilloma, and are best given pre-and post-operative antifungal drugs. Often, no treatment is necessary. However, if a patient coughs up blood (haemoptysis), treatment may be required (usually angiography and embolisation, surgery or taking tranexamic acid). Angiography (injection of dye into the blood vessels) may be used to find the site of bleeding which may be stopped by shooting tiny pellets into the bleeding vessel.
For chronic cavitary pulmonary aspergillosis and chronic fibrosing pulmonary aspergillosis, lifelong use of antifungal drugs is usual. Itraconazole and voriconazole are first and second-line anti fungal agents respectively. Posaconazole can be used as third-line agent, for patients who are intolerant of or developed resistance to the first and second-line agents. Regular chest X-rays, serological and mycological parameters as well as quality of life questionnaires are used to monitor treatment progress. It is important to monitor the blood levels of antifungals to ensure optimal dosing as individuals vary in their absorption levels of these drugs.
New criteria by the ABPA Complicated Asthma ISHAM Working Group suggests a 6-stage criteria for the diagnosis of ABPA, though this is yet to be formalised into official guidelines. This would replace the current gold standard staging protocol devised by Patterson and colleagues. Stage 0 would represent an asymptomatic form of ABPA, with controlled asthma but still fulfilling the fundamental diagnostic requirements of a positive skin test with elevated total IgE (>1000 IU/mL). Stage 6 is an advanced ABPA, with the presence of type II respiratory failure or pulmonary heart disease, with radiological evidence of severe fibrosis consistent with ABPA on a high-resolution CT scan. It must be diagnosed after excluding the other, reversible causes of acute respiratory failure.
It is not practical to test or decontaminate most sites that may be contaminated with "H. capsulatum", but the following sources list environments where histoplasmosis is common, and precautions to reduce a person's risk of exposure, in the three parts of the world where the disease is prevalent. Precautions common to all geographical locations would be to avoid accumulations of bird or bat droppings.
The US National Institute for Occupational Safety and Health (NIOSH) provides information on work practices and personal protective equipment that may reduce the risk of infection. This document is available in English and Spanish.
Authors at the University of Nigeria have published a review which includes information on locations in which histoplasmosis has been found in Africa (in chicken runs, bats and the caves bats infest, and in soil), and a thorough reference list including English, French, and Spanish language references.
Clinically, there is a wide spectrum of disease manifestation, making diagnosis somewhat difficult. More severe forms include: (1) the chronic pulmonary form, often occurring in the presence of underlying pulmonary disease; and (2) a disseminated form, which is characterized by the progressive spread of infection to extra-pulmonary sites. Oral manifestations have been reported as the main complaint of the disseminated forms, leading the patient to seek treatment, whereas pulmonary symptoms in disseminated disease may be mild or even misinterpreted as flu. Histoplasmosis can be diagnosed by samples containing the fungus taken from sputum (via bronchoalveolar lavage), blood, or infected organs. It can also be diagnosed by detection of antigens in blood or urine samples by ELISA or PCR. Antigens can cross-react with antigens of African histoplasmosis (caused by Histoplasma duboisii), blastomycosis, coccidioidomycosis, paracoccidioidomycosis, and Penicillium marneffei infection. Histoplasmosis can also be diagnosed by a test for antibodies against "Histoplasma" in the blood. "Histoplasma" skin tests indicate whether a person has been exposed, but do not indicate whether they have the disease. Formal histoplasmosis diagnoses are often confirmed only by culturing the fungus directly. Sabouraud agar is one type of agar growth media on which the fungus can be cultured. Cutaneous manifestations of disseminated disease are diverse and often present as a nondescript rash with systemic complaints. Diagnosis is best established by urine antigen testing, as blood cultures may take up to 6 weeks for diagnostic growth to occur and serum antigen testing often comes back with a false negative before 4 weeks of disseminated infection.
Rapid progression from initial symptoms to respiratory failure is a key feature. An x-ray that shows ARDS is necessary for diagnosis (fluid in the small air sacs (alveoli) in both lungs). In addition, a biopsy of the lung that shows organizing diffuse alveolar damage is required for diagnosis. Other diagnostic tests are useful in excluding other similar conditions, but history, x-ray, and biopsy are essential. These other tests may include basic blood work, blood cultures, and bronchoalveolar lavage.
The clinical picture is similar to ARDS, but AIP differs from ARDS in that the cause for AIP is not known.