Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
          
        
In terms of the differential diagnosis for polyneuropathy one must look at the following:
The diagnosis of polyneuropathies begins with a history and physical examination to ascertain the pattern of the disease process (such as-arms, legs, distal, proximal) if they fluctuate, and what deficits and pain are involved. If pain is a factor, determining where and how long the pain has been present is important, one also needs to know what disorders are present within the family and what diseases the person may have. Although diseases often are suggested by the physical examination and history alone, tests that may be employed include: electrodiagnostic testing, serum protein electrophoresis, nerve conduction studies, urinalysis, serum creatine kinase (CK) and antibody testing (nerve biopsy is sometimes done).
Other tests may be used, especially tests for specific disorders associated with polyneuropathies, quality measures have been developed to diagnose patients with distal symmetrical polyneuropathy (DSP).
Patients with diabetes and proximal (hip, thigh) pain and weakness are often suspected of having diabetic amyotrophy. More definitive diagnosis is commonly made with electrodiagnostic studies including nerve conduction studies (NCS) and electromyogram (EMG). Diabetic amyotrophy is often a diagnosis of exclusion in diabetic patients with a lumbosacral plexopathy for whom no other cause of lumbosacral plexopathy can be determined.
Peripheral neuropathy may first be considered when an individual reports symptoms of numbness, tingling, and pain in feet. After ruling out a lesion in the central nervous system as a cause, diagnosis may be made on the basis of symptoms, laboratory and additional testing, clinical history, and a detailed examination.
During physical examination, specifically a neurological examination, those with generalized peripheral neuropathies most commonly have distal sensory or motor and sensory loss, although those with a pathology (problem) of the nerves may be perfectly normal; may show proximal weakness, as in some inflammatory neuropathies, such as Guillain–Barré syndrome; or may show focal sensory disturbance or weakness, such as in mononeuropathies. Classically, ankle jerk reflex is absent in peripheral neuropathy.
A physical examination will involve testing the deep ankle reflex as well as examining the feet for any ulceration. For large fiber neuropathy, an exam will usually show an abnormally decreased sensation to vibration, which is tested with a 128-Hz tuning fork, and decreased sensation of light touch when touched by a nylon monofilament.
Diagnostic tests include electromyography (EMG) and nerve conduction studies (NCSs), which assess large myelinated nerve fibers. Testing for small-fiber peripheral neuropathies often relates to the autonomic nervous system function of small thinly- and unmyelinated fibers. These tests include a sweat test and a tilt table test. Diagnosis of small fiber involvement in peripheral neuropathy may also involve a skin biopsy in which a 3 mm-thick section of skin is removed from the calf by a punch biopsy, and is used to measure the skin intraepidermal nerve fiber density (IENFD), the density of nerves in the outer layer of the skin. Reduced density of the small nerves in the epidermis supports a diagnosis of small-fiber peripheral neuropathy.
Laboratory tests include blood tests for vitamin B-12 levels, a complete blood count, measurement of thyroid stimulating hormone levels, a comprehensive metabolic panel screening for diabetes and pre-diabetes, and a serum immunofixation test, which tests for antibodies in the blood.
Alcoholic polyneuropathy is very similar to other axonal degenerative polyneuropathies and therefore can be difficult to diagnose. When alcoholics have sensorimotor polyneuropathy as well as a nutritional deficiency, a diagnosis of alcoholic polyneuropathy is often reached.
To confirm the diagnosis, a physician must rule out other causes of similar clinical syndromes. Other neuropathies can be differentiated on the basis of typical clinical or laboratory features. Differential diagnoses to alcoholic polyneuropathy include amyotrophic lateral sclerosis, beriberi, Charcot-Marie-Tooth disease, diabetic lumbosacral plexopathy, Guillain Barre Syndrome, diabetic neuropathy, mononeuritis multiplex and post-polio syndrome.
To clarify the diagnosis, medical workup most commonly involves laboratory tests, though, in some cases, imaging, nerve conduction studies, electromyography, and vibrometer testing may also be used.
A number of tests may be used to rule out other causes of peripheral neuropathy. One of the first presenting symptoms of diabetes mellitus may be peripheral neuropathy, and hemoglobin A1C can be used to estimate average blood glucose levels. Elevated blood creatinine levels may indicate renal insufficiency and may also be a cause of peripheral neuropathy. A heavy metal toxicity screen should also be used to exclude lead toxicity as a cause of neuropathy.
Alcoholism is normally associated with nutritional deficiencies, which may contribute to the development of alcoholic polyneuropathy. Thiamine, vitamin B-12, and folic acid are vitamins that play an essential role in the peripheral and central nervous system and should be among the first analyzed in laboratory tests. It has been difficult to assess thiamine status in individuals due to difficulties in developing a method to directly assay thiamine in the blood and urine. A liver function test may also be ordered, as alcoholic consumption may cause an increase in liver enzyme levels.
Liver transplantation has proven to be effective for ATTR familial amyloidosis due to Val30Met mutation.
Alternatively, a European Medicines Agency approved drug Tafamidis or Vyndaqel now exists which stabilizes transthyretin tetramers comprising wild type and different mutant subunits against amyloidogenesis halting the progression of peripheral neuropathy and autonomic nervous system dysfunction.
Currently there are two ongoing clinical trials undergoing recruitment in the United States and worldwide to evaluate investigational medicines that could possibly treat TTR.
Initial screening for CIP/CIM may be performed using an objective scoring system for muscle strength. The Medical Research Council (MRC) score is one such tool, and sometimes used to help identify CIP/CIM patients in research studies. The MRC score involves assessing strength in 3 muscle groups in the right and left sides of both the upper and lower extremities. Each muscle tested is given a score of 0-5, giving a total possible score of 60. An MRC score less than 48 is suggestive of CIP/CIM. However, the tool requires that patients be awake and cooperative, which is often not the case. Also, the screening tool is non-specific, because it does not identify the cause a person's muscle weakness.
Once weakness is detected, the evaluation of muscle strength should be repeated several times. If the weakness persists, then a muscle biopsy, a nerve conduction study (electrophysiological studies), or both should be performed.
Proper management of diabetes mellitus can prevent proximal diabetic neuropathy from ever occurring.
The incidence of proximal diabetic neuropathy incidence is thought to be correlated to blood glucose control in diabetics, and is likely reversible with better control.
Medication helps reduce the pain involved in proximal diabetic neuropathy. Most patients take oral medication that is prescribed by a doctor. Common types of medication used to treat diabetic amyotrophy include anticonvulsives (e.g. gabapentin, pregabalin) as well as opioid medications, although the latter category is not optimally indicated for neuropathic pain.
The serum creatine phosphokinase (CPK) can be mildly elevated. While the CPK is often a good marker for damage to muscle tissue, it is not a helpful marker in CIP/CIM, because CIP/CIM is a gradual process and does not usually involve significant muscle cell death (necrosis). Also, even if necrosis is present, it may be brief and is therefore easily missed. If a lumbar puncture (spinal tap) is performed, the protein level in the cerebral spinal fluid would be normal.
Various strategies have been proposed to prevent the development of metabolic syndrome. These include increased physical activity (such as walking 30 minutes every day), and a healthy, reduced calorie diet. Many studies support the value of a healthy lifestyle as above. However, one study stated these potentially beneficial measures are effective in only a minority of people, primarily due to a lack of compliance with lifestyle and diet changes. The International Obesity Taskforce states that interventions on a sociopolitical level are required to reduce development of the metabolic syndrome in populations.
The Caerphilly Heart Disease Study followed 2,375 male subjects over 20 years and suggested the daily intake of a pint (~568 ml) of milk or equivalent dairy products more than halved the risk of metabolic syndrome. Some subsequent studies support the authors' findings, while others dispute them. A systematic review of four randomized controlled trials found that a paleolithic nutritional pattern improved three of five measurable components of the metabolic syndrome in participants with at least one of the components.
The International Diabetes Federation consensus worldwide definition of the metabolic syndrome (2006) is:
Central obesity (defined as waist circumference with ethnicity-specific values) AND any two of the following:
- Raised triglycerides: > 150 mg/dL (1.7 mmol/L), or specific treatment for this lipid abnormality
- Reduced HDL cholesterol: < 40 mg/dL (1.03 mmol/L) in males, < 50 mg/dL (1.29 mmol/L) in females, or specific treatment for this lipid abnormality
- Raised blood pressure (BP): systolic BP > 130 or diastolic BP >85 mm Hg, or treatment of previously diagnosed hypertension
- Raised fasting plasma glucose (FPG): >100 mg/dL (5.6 mmol/L), or previously diagnosed type 2 diabetes
If FPG is >5.6 mmol/L or 100 mg/dL, an oral glucose tolerance test is strongly recommended, but is not necessary to define presence of the syndrome.
Below are various methods/techniques used to diagnose demyelinating diseases.
- Exclusion of other conditions that have overlapping symptoms
- Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to visualize internal structures of the body in detail. MRI makes use of the property of nuclear magnetic resonance (NMR) to image nuclei of atoms inside the body. This method is reliable because MRIs assess changes in proton density. "Spots" can occur as a result of changes in brain water content.
- Evoked potential is an electrical potential recorded from the nervous system following the presentation of a stimulus as detected by electroencephalography (EEG), electromyography (EMG), or other electrophysiological recording method.
- Cerebrospinal fluid analysis (CSF) can be extremely beneficial in the diagnosis of central nervous system infections. A CSF culture examination may yield the microorganism that caused the infection.
- Quantitative proton magnetic resonance spectroscopy (MRS) is a non-invasive analytical technique that has been used to study metabolic changes in brain tumors, strokes, seizure disorders, Alzheimer's disease, depression and other diseases affecting the brain. It has also been used to study the metabolism of other organs such as muscles.
- Diagnostic criteria refers to a specific combination of signs, symptoms, and test results that the clinician uses in an attempt to determine the correct diagnosis.
- Fluid-attenuated inversion recovery (FLAIR) uses a pulse sequence to suppress cerebrospinal fluid and show lesions more clearly, and is used for example in multiple sclerosis evaluation.
The treatment of peripheral neuropathy varies based on the cause of the condition, and treating the underlying condition can aid in the management of neuropathy. When peripheral neuropathy results from diabetes mellitus or prediabetes, blood sugar management is key to treatment. In prediabetes in particular, strict blood sugar control can significantly alter the course of neuropathy. In peripheral neuropathy that stems from immune-mediated diseases, the underlying condition is treated with intravenous immunoglobulin or steroids. When peripheral neuropathy results from vitamin deficiencies or other disorders, those are treated as well.
Although there is no known cure for alcoholic polyneuropathy, there are a number of treatments that can control symptoms and promote independence. Physical therapy is beneficial for strength training of weakened muscles, as well as for gait and balance training.
There are several types of immune-mediated neuropathies recognised. These include
- Chronic inflammatory demyelinating polyneuropathy (CIPD) with subtypes:
- Classical CIDP
- CIDP with diabetes
- CIDP/monoclonal gammopathy of undetermined significance
- Sensory CIDP
- Multifocal motor neuropathy
- Multifocal acquired demyelinating sensory and motor neuropathy (Lewis-Sumner syndrome)
- Multifocal acquired sensory and motor neuropathy
- Distal acquired demyelinating sensory neuropathy
- Guillain-Barre syndrome with subtypes:
- Acute inflammatory demyelinating polyradiculoneuropathy
- Acute motor axonal neuropathy
- Acute motor and sensory axonal neuropathy
- Acute pandysautonomia
- Miller Fisher syndrome
- IgM monoclonal gammopathies with subtypes:
- Waldenstrom's macroglobulinemia
- Mixed cryoglobulinemia, gait ataxia, late-onset polyneuropathy syndrome
- Myelin-associated glycoprotein-associated gammopathy, polyneuropathy, organomegaly, endocrinopathy, M-protein and skin changes syndrome (POEMS)
For this reason a diagnosis of chronic inflammatory demyelinating polyneuropathy needs further investigations.
The diagnosis is usually provisionally made through a clinical neurological examination. Patients usually present with a history of weakness, numbness, tingling, pain and difficulty in walking. They may additionally present with fainting spells while standing up or burning pain in extremities. Some patients may have sudden onset of back pain or neck pain radiating down the extremities, usually diagnosed as radicular pain. These symptoms are usually progressive and may be intermittent.
Autonomic system dysfunction can occur; in such a case, the patient would complain of orthostatic dizziness, problems breathing, eye, bowel, bladder and cardiac problems. The patient may also present with a single cranial nerve or peripheral nerve dysfunction.
On examination the patients may have weakness, and loss of deep tendon reflexes (rarely increased or normal). There may be atrophy (shrinkage) of muscles, fasciculations (twitching) and loss of sensation. Patients may have multi-focal motor neuropathy, as they have no sensory loss.
Most experts consider the necessary duration of symptoms to be greater than 8 weeks for the diagnosis of CIDP to be made.
Typical diagnostic tests include:
- Electrodiagnostics – electromyography (EMG) and nerve conduction study (NCS). In usual CIDP, the nerve conduction studies show demyelination. These findings include:
1. a reduction in nerve conduction velocities;
2. the presence of conduction block or abnormal temporal dispersion in at least one motor nerve;
3. prolonged distal latencies in at least two nerves;
4. absent F waves or prolonged minimum F wave latencies in at least two motor nerves. (In some case EMG/NCV can be normal).
- Serum test to exclude other autoimmune diseases.
- Lumbar puncture and serum test for anti-ganglioside antibodies. These antibodies are present in the branch of CIDP diseases comprised by anti-GM1, anti-GD1a, and anti-GQ1b.
- Sural nerve biopsy; biopsy is considered for those patients in whom the diagnosis is not completely clear, when other causes of neuropathy (e.g., hereditary, vasculitic) cannot be excluded, or when profound axonal involvement is observed on EMG.
- Ultrasound of the periferal nerves may show swelling of the affected nerves
- MRI can also be used in the diagnosic workup
In some cases electrophysiological studies fail to show any evidence of demyelination. Though conventional electrophysiological diagnostic criteria are not met, the patient may still respond to immunomodulatory treatments. In such cases, presence of clinical characteristics suggestive of CIDP are critical, justifying full investigations, including sural nerve biopsy.
Several different problems may lead to the diagnosis, usually by two years of age:
- seizures or other manifestations of severe fasting hypoglycemia
- hepatomegaly with abdominal protuberance
- hyperventilation and apparent respiratory distress due to metabolic acidosis
- episodes of vomiting due to metabolic acidosis, often precipitated by minor illness and accompanied by hypoglycemia
Once the diagnosis is suspected, the multiplicity of clinical and laboratory features usually makes a strong circumstantial case. If hepatomegaly, fasting hypoglycemia, and poor growth are accompanied by lactic acidosis, hyperuricemia, hypertriglyceridemia, and enlarged kidneys by ultrasound, gsd I is the most likely diagnosis. The differential diagnosis list includes glycogenoses types III and VI, fructose 1,6-bisphosphatase deficiency, and a few other conditions (page 5), but none are likely to produce all of the features of GSD I.
The next step is usually a carefully monitored fast. Hypoglycemia often occurs within six hours. A critical blood specimen obtained at the time of hypoglycemia typically reveals a mild metabolic acidosis, high free fatty acids and beta-hydroxybutyrate, very low insulin levels, and high levels of glucagon, cortisol, and growth hormone. Administration of intramuscular or intravenous glucagon (0.25 to 1 mg, depending on age) or epinephrine produces little rise of blood sugar.
The diagnosis is definitively confirmed by liver biopsy with electron microscopy and assay of glucose-6-phosphatase activity in the tissue and/or specific gene testing, available in recent years.
While the disease manifests early in life in most cases, diagnosis of the disease is often quite delayed. The symptoms that affected patients present vary, but the most common presenting symptoms are gastrointestinal issues such as nausea, vomiting, abdominal pain, and diarrhea, and neurologic or ocular symptoms such as hearing loss, weakness, and peripheral neuropathy. These gastrointestinal symptoms cause patients with MNGIE to be very thin and experience persistent weight loss and this often leads to MNGIE being misdiagnosed as an eating disorder. These symptoms without presentation of disordered eating and warped body image warrant further investigation into the possibility of MNGIE as a diagnosis. Presentation of these symptoms and lack of disordered eating are not enough for a diagnosis. Radiologic studies showing hypoperistalsis, large atonic stomach, dilated duodenum, diverticula, and white matter changes are required to confirm the diagnosis. Elevated blood and urine nucleoside levels are also indicative of MNGIE syndrome. Abnormal nerve conduction as well as analysis of mitochondria from liver, intestines, muscle, and nerve tissue can also be used to support the diagnosis.
A successful treatment for MNGIE has yet to be found, however, symptomatic relief can be achieved using pharmacotherapy and celiac plexus neurolysis. Celiac plexus neurolysis involves interrupting neural transmission from various parts of the gastrointestinal tract. By blocking neural transmission, pain is relieved and gastrointestinal motility increases. Stem cell therapies are currently being investigated as a potential cure for certain patients with the disease, however, their success depends on physicians catching the disease early before too much organ damage has occurred.
As in multiple sclerosis, another demyelinating condition, it is not possible to predict with certainty how CIDP will affect patients over time. The pattern of relapses and remissions varies greatly with each patient. A period of relapse can be very disturbing, but many patients make significant recoveries.
If diagnosed early, initiation of early treatment to prevent loss of nerve axons is recommended. However, many individuals are left with residual numbness, weakness, tremors, fatigue and other symptoms which can lead to long-term morbidity and diminished quality of life.
It is important to build a good relationship with doctors, both primary care and specialist. Because of the rarity of the illness, many doctors will not have encountered it before. Each case of CIDP is different, and relapses, if they occur, may bring new symptoms and problems. Because of the variability in severity and progression of the disease, doctors will not be able to give a definite prognosis. A period of experimentation with different treatment regimens is likely to be necessary in order to discover the most appropriate treatment regimen for a given patient.
Without adequate metabolic treatment, patients with GSD I have died in infancy or childhood of overwhelming hypoglycemia and acidosis. Those who survived were stunted in physical growth and delayed in puberty because of chronically low insulin levels. Mental retardation from recurrent, severe hypoglycemia is considered preventable with appropriate treatment.
Hepatic complications have been serious in some patients. Adenomas of the liver can develop in the second decade or later, with a small chance of later malignant transformation to hepatoma or hepatic carcinomas (detectable by alpha-fetoprotein screening). Several children with advanced hepatic complications have improved after liver transplantation.
Additional problems reported in adolescents and adults with GSD I have included hyperuricemic gout, pancreatitis, and chronic renal failure. Despite hyperlipidemia, atherosclerotic complications are uncommon.
With diagnosis before serious harm occurs, prompt reversal of acidotic episodes, and appropriate long-term treatment, most children will be healthy. With exceptions and qualifications, adult health and life span may also be fairly good, although lack of effective treatment before the mid-1970s means information on long-term efficacy is limited.
Demyelinating diseases can be divided in those affecting the central nervous system and those presents in the peripheral nervous system, presenting different demyelination conditions. They can also be divided by other criteria in inflammatory and non-inflammatory, according to the presence or lack of inflammation, and finally, a division can also be made depending on the underlying reason for demyelination in myelinoclastic (myelin is attacked by an external substance) and leukodystrophic (myelin degenerates without attacks)
The aggregation of one precursor protein leads to peripheral neuropathy and/or autonomic nervous system dysfunction. These proteins include: transthyretin (ATTR, the most commonly implicated protein), apolipoprotein A1, and gelsolin.
Due to the rareness of the other types of familial neuropathies, transthyretin amyloidogenesis-associated polyneuropathy should probably be considered first.
"FAP-I" and "FAP-II" are associated with transthyretin. (Senile systemic amyloidosis [abbreviated "SSA"] is also associated with transthyretin aggregation.)
"FAP-III" is also known as "Iowa-type", and involves apolipoprotein A1.
"FAP-IV" is also known as "Finnish-type", and involves gelsolin.
Fibrinogen, apolipoprotein A1, and lysozyme are associated with a closely related condition, familial visceral amyloidosis.
The appearance of microvillous inclusion disease on light microscopy is similar to celiac sprue; however, it usually lacks the intraepithelial lymphocytic infiltration characteristic of celiac sprue and stains positive for carcinoembryonic antigen (CEA).
The definitive diagnosis is dependent on electron microscopy.
The differential diagnosis of chronic and intractable diarrhea is:
- Intestinal epithelial dysplasia
- Syndromatic diarrhea
- Immunoinflammatory enteropathy
For diagnosis of NPSLE, it must be determined whether neuropsychiatric symptoms are indeed caused by SLE, whether they constitute a separate comorbid condition, or whether they are an adverse effect of disease treatment. In addition, onset of neuropsychiatric symptoms may happen prior to the diagnosis of lupus. Due to the lack of uniform diagnostic standards, statistics about NPSLE vary widely.
Tests which aid in diagnosis include MRI, electrophysiological studies, psychiatric evaluation, and autoantibody tests.
The drug tafamidis has completed a phase II/III 18-month-long placebo controlled clinical trial
and these results in combination with an 18-month follow-on study demonstrated that Tafamidis or Vyndaqel slowed progression of FAP, particularly when administered to patients early in the course of FAP. This drug is now approved by the European Medicines Agency.
The US Food and Drug Administration's Peripheral and Central Nervous System Drugs Advisory Committee rejected the drug in June 2012, in a 13-4 vote. The committee stated that there was not enough evidence supporting efficacy of the drug, and requested additional clinical trials.