Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The diagnosis of neurosarcoidosis often is difficult. Definitive diagnosis can only be made by biopsy (surgically removing a tissue sample). Because of the risks associated with brain biopsies, they are avoided as much as possible. Other investigations that may be performed in any of the symptoms mentioned above are computed tomography (CT) or magnetic resonance imaging (MRI) of the brain, lumbar puncture, electroencephalography (EEG) and evoked potential (EP) studies. If the diagnosis of sarcoidosis is suspected, typical X-ray or CT appearances of the chest may make the diagnosis more likely; elevations in angiotensin-converting enzyme and calcium in the blood, too, make sarcoidosis more likely. In the past, the Kveim test was used to diagnose sarcoidosis. This now obsolete test had a high (85%) sensitivity, but required spleen tissue of a known sarcoidosis patient, an extract of which was injected into the skin of a suspected case.
Only biopsy of suspicious lesions in the brain or elsewhere is considered useful for a definitive diagnosis of neurosarcoid. This would demonstrate granulomas (collections of inflammatory cells) rich in epithelioid cells and surrounded by other immune system cells (e.g. plasma cells, mast cells). Biopsy may be performed to distinguish mass lesions from tumours (e.g. gliomas).
MRI with gadolinium enhancement is the most useful neuroimaging test. This may show enhancement of the pia mater or white matter lesions that may resemble the lesions seen in multiple sclerosis.
Lumbar puncture may demonstrate raised protein level, pleiocytosis (i.e. increased presence of both lymphocytes and neutrophil granulocytes) and oligoclonal bands. Various other tests (e.g. ACE level in CSF) have little added value.
Some recent papers propose to classify neurosarcoidosis by likelihood:
- "Definite" neurosarcoidosis can only be diagnosed by plausible symptoms, a positive biopsy and no other possible causes for the symptoms
- "Probable" neurosarcoidosis can be diagnosed if the symptoms are suggestive, there is evidence of central nervous system inflammation (e.g. CSF and MRI), and other diagnoses have been excluded. A diagnosis of systemic sarcoidosis is not essential.
- "Possible" neurosarcoidosis may be diagnosed if there are symptoms not due to other conditions but other criteria are not fulfilled.
FDG positron emission tomography (PET) may be useful to detect the condition early. Other imaging studies including MRI, CT scans, and X-rays may reveal inflammation and/or damaged cartilage facilitating diagnosis.
It is useful to do a full set of pulmonary function tests, including inspiratory and expiratory flow-volume loops. Patterns consistent with either extrathoracic or intrathoracic obstruction (or both) may occur in this disease. Pulmonary function tests (flow-volume loops) provide a useful noninvasive means of quantifying and following the degree of extrathoracic airway obstruction in relapsing polychondritis.
Granulomatosis with polyangiitis is usually suspected only when a person has had unexplained symptoms for a long period of time. Determination of Anti-neutrophil cytoplasmic antibodies (ANCAs) can aid in the diagnosis, but positivity is not conclusive and negative ANCAs are not sufficient to reject the diagnosis. Cytoplasmic-staining ANCAs that react with the enzyme proteinase 3 (cANCA) in neutrophils (a type of white blood cell) are associated with GPA.
If the person has kidney failure or cutaneous vasculitis, a biopsy is obtained from the kidneys. On rare occasions, thoracoscopic lung biopsy is required. On histopathological examination, a biopsy will show "leukocytoclastic vasculitis" with necrotic changes and granulomatous inflammation (clumps of typically arranged white blood cells) on microscopy. These granulomas are the main reason for the name granulomatosis with polyangiitis, although it is not an essential feature. Nevertheless, necrotizing granulomas are a hallmark of this disease. However, many biopsies can be nonspecific and 50% provide too little information for the diagnosis of GPA.
The diagnostic testing for vasculitis should be guided by the patient's history and physical exam. The clinician should ask about the duration, onset, and presence any associated symptoms such as weight loss or fatigue (that would indicate a systemic cause). It is important to distinguish between IgA and non-IgA vasculitis. IgA vasculitis is more likely to present with abdominal pain, bloody urine, and joint pain. In the case that the cause is not obvious, a reasonable initial workup would include a complete blood count, urinalysis, basic metabolic panel, fecal occult blood testing, erythrocyte sedimentation rate (ESR), and C-reactive protein level. Small vessel cutaneous vasculitis is a diagnosis of exclusion and requires ruling out systemic causes of the skin findings. Skin biopsy (punch or excisional) is the most definitive diagnostic test and should be performed with 48 hours of appearance of the vasculitis. A skin biopsy will be able to determine if the clinical findings are truly due to a vasculitis or due to some other cause.
Lupus is a condition with no known cure. Lupus cerebritis however is treated by suppressing the autoimmune activity.
When it is caused by infections, treatment consists of medication that will primarily cure the infection. For inflammation, steroids can be used to bring down the swelling. If the swelling appears to have increased to a dangerous level, surgery may be needed to relieve pressure on the brain. The formation of an abscess also calls for surgery as it will be necessary to drain the abscess.
In 1990, the American College of Rheumatology accepted classification criteria for GPA. These criteria were not intended for diagnosis, but for inclusion in randomized controlled trials. Two or more positive criteria have a sensitivity of 88.2% and a specificity of 92.0% of describing GPA.
- Nasal or oral inflammation:
- painful or painless oral ulcers "or"
- purulent or bloody nasal discharge
- Lungs: abnormal chest X-ray with:
- nodules,
- infiltrates "or"
- cavities
- Kidneys: urinary sediment with:
- microhematuria "or"
- red cell casts
- Biopsy: granulomatous inflammation
- within the arterial wall "or"
- in the perivascular area
According to the Chapel Hill Consensus Conference (CHCC) on the nomenclature of systemic vasculitis (1992), establishing the diagnosis of GPA demands:
- a granulomatous inflammation involving the respiratory tract, and
- a vasculitis of small to medium-size vessels.
Several investigators have compared the ACR and Chapel Hill criteria.
The best imaging modality for idiopathic orbital inflammatory disease is contrast-enhanced thin section magnetic resonance with fat suppression. The best diagnostic clue is a poorly marginated, mass-like enhancing soft tissue involving any area of the orbit.
Overall, radiographic features for idiopathic orbital inflammatory syndrome vary widely. They include inflammation of the extraocular muscles (myositis) with tendinous involvement, orbital fat stranding, lacrimal gland inflammation and enlargement (dacryoadenitis), involvement of the optic sheath complex, uvea, and sclera, a focal intraorbital mass or even diffuse orbital involvement. Bone destruction and intracranial extension is rare, but has been reported. Depending on the area of involvement, IOI may be categorized as:
- Myositic
- Lacrimal
- Anterior – Involvement of the globe, retrobulbar orbit
- Diffuse – Multifocal intraconal involvement with or without an extraconal component
- Apical – Involving the orbital apex and with intracranial involvement
Tolosa–Hunt syndrome is a variant of orbital pseudotumor in which there is extension into the cavernous sinus through the superior orbital fissure. Another disease variant is Sclerosing pseudotumor, which more often presents bilaterally and may extend into the sinuses.
CT findings
In non-enhanced CT one may observe a lacrimal, extra-ocular muscle, or other orbital mass. It may be focal or infiltrative and will have poorly circumscribed soft tissue. In contrast-enhanced CT there is moderate diffuse irregularity and enhancement of the involved structures. A dynamic CT will show an attenuation increase in the late phase, contrary to lymphoma where there is an attenuation decrease. Bone CT will rarely show bone remodeling or erosion, as mentioned above.
MR findings
On MR examination there is hypointensity in T1 weighted imaging (WI), particularly in sclerosing disease. T1WI with contrast will show moderate to marked diffuse irregularity and enhancement of involved structures. T2 weighted imaging with fat suppression will show iso- or slight hyperintensity compared to muscle. There is also decreased signal intensity compared to most orbital lesions due to cellular infiltrate and fibrosis. In chronic disease or sclerosing variant, T2WI with FS will show hypointensity (due to fibrosis). Findings on STIR (Short T1 Inversion Recovery) are similar to those on T2WI FS. In Tolosa–Hunt syndrome, findings include enhancement and fullness of the anterior cavernous sinus and superior orbital fissure in T1WI with contrast, while MRA may show narrowing of cavernous sinus internal carotid artery (ICA).
Ultrasonographic findings
On grayscale ultrasound there is reduced reflectivity, regular internal echoes, and weak attenuation, in a way, similar to lymphoproliferative lesions.
Diagnosis of ARN is outlined by the American Uveitis Society. Though most diagnosis's of ARN are made by clinical features, a physician may take a vitreous sample and have it tested for herpes markers. Common lab tests that are run on the sample include a viral culture, viral PCR, direct/indirect immunofluorescence, viral antibody measurement.
The American Uveitis Society has established the following guidelines for ARN diagnosis:
1. Retinal necrosis with one or more focus points borders in the peripheral retina
2. In the absence of antiviral treatment, the condition progresses rapidly
3. Spreading to the surroundings
4. Buildup of blood vessels
5. Inflammation of the vitreous.
Analysis entails analyzing several different aspects of the cerebrospinal fluid (CSF) to identify characteristics linked to WM and BNS. Quantification of leukocytes and their differentiation, as well as a morphological analysis of any detected malignant lymphomas found in the CSF are some parameters assed by CSF analysis.
Flow cytometry, used to identify cell biomarkers, is an auxiliary tool used in CSF analysis. With respect to diagnosing BNS, flow cytometry analyzes CSF contents for B-cells expressing the pan antigens CD19 and CD20, commonly found in WM; it should be noted, not all cases of BNS show conclusive findings in CSF analysis.
Diagnosis is fourfold: History and physical examination, elevation of creatine kinase, electromyograph (EMG) alteration, and a positive muscle biopsy.
The hallmark clinical feature of polymyositis is proximal muscle weakness, with less important findings being muscle pain and dysphagia. Cardiac and pulmonary findings will be present in approximately 25% of cases of patients with polymyositis.
Sporadic inclusion body myositis (sIBM): IBM is often confused with (misdiagnosed as) polymyositis or dermatomyositis that does not respond to treatment is likely IBM. sIBM comes on over months to years; polymyositis comes on over weeks to months. Polymyositis tends to respond well to treatment, at least initially; IBM does not.
At least one study suggests that gluten neuropathy can be effectively treated with a gluten-free diet. In the study, 35 patients with gluten neuropathy adhered to a gluten-free diet, where adherence was monitored serologically. After one year, the treatment group had improved significantly compared to the control group. The indicators of improvements were improvements of sural sensory action potential and subjective improvement of neuropathic symptoms. Subgroup analysis suggested that severe neuropathy might imply reduced capacity for recovery of the peripheral nerves or longer recovery.
Corticosteroids remain the main treatment modality for IOI. There is usually a dramatic response to this treatment and is often viewed as pathognomonic for this disease. Although response is usually quick, many agree that corticosteroids should be continued on a tapering basis to avoid breakthrough inflammation.
Although many respond to corticosteroid treatment alone, there are several cases in which adjuvant therapy is needed. While many alternatives are available, there is no particular well-established protocol to guide adjuvant therapy. Among the available options there is: surgery, alternative corticosteroid delivery, radiation therapy, non-steroidal anti-inflammatory drugs, cytotoxic agents (chlorambucil, cyclophosphamide), corticosteroid sparing immunosuppressants (methotrexate, cyclosporine, azathioprine), IV immune-globin, plasmapheresis, and biologic treatments (such as TNF-α inhibitors).
Cerebral angiography and magnetic resonance imaging, family medical history, symptoms, a complete physical examination, and ultimately biopsy of the brain, are often required for the diagnosis. Also, many lab tests must be done for the diagnosis; tests may reveal anemia (a shortage of red blood cells), a high white blood cell count, a high platelet count, allergic reactions, immune complexes, antibodies (tools the body uses to fight off threats) and elevation of inflammatory markers. Another crucial part in the diagnosis of cerebral vasculitis is the use of imaging techniques. Techniques such as conventional digital subtraction angiography (DSA) and magnetic resonance imaging (MRI) are used to find and monitor cerebral involvement.
MRI with gadolinium contrast is the primary radiologic tool used to diagnose ailments of the central nervous system, BNS included. MRI’s effect is twofold in that it is able to identify brain and spine abnormalities, as well as identifying tissues appropriate for biopsy. MRI with gadolinium contrast can also discern which form of BNS has formed. Where the tumoral form of BNS is highlighted by tumor growth in the subcortical hemispheric regions, the diffuse form of BNS is characterized by leptomeningeal and perivascular infiltration by lymphoid cells. Other characteristics of BNS identified via MRI are abnormal enhancement of cranial and spinal nerves, as well as thickening and enhancement of the cauda equina.
Cerebrospinal fluid findings:
- Raised protein (25% cases)
- Negative for 14–3–3 protein
- May contain antithyroid antibodies
- Magnetic resonance imaging abnormalities consistent with encephalopathy (26% cases)
- Single photon emission computed tomography shows focal and global hypoperfusion (75% cases)
- Cerebral angiography is normal
Thyroid hormone abnormalities are common (>80% cases):
- subclinical hypothyroidism (35% cases)
- overt hypothyroidism (20% cases)
- hyperthyroidism (5% cases)
- euthyroid on levothyroxine (10% cases)
- euthyroid not on levothyroxine (20% cases)
Thyroid antibodies – both anti-thyroid peroxidase antibodies (anti-TPO, anti-thyroid microsomal antibodies, anti-M) and antithyroglobulin antibodies (anti-Tg) – in the disease are elevated but their levels do not correlate with the severity.
Electroencephalogram studies, while almost always abnormal (98% cases), are usually nondiagnostic. The most common findings are diffuse or generalized slowing or frontal intermittent rhythmic delta activity. Prominent triphasic waves, focal slowing, epileptiform abnormalities, photoparoxysmal and photomyogenic responses may be seen.
Still's disease does not affect children under 6 months old.
Hyperimmunoglobulin D syndrome in 50% of cases is associated with mevalonate kinase deficiency which can be measured in the leukocytes.
The diagnosis is based on observing the patient and finding the constellation of symptoms and signs described above. A few blood tests help, by showing signs of long standing inflammation. There is no specific test for the disease, though now that the gene that causes the disease is known, that may change.
Routine laboratory investigations are non specific: anaemia, increased numbers of polymorphs, an elevated erythrocyte sedimentation rate and elevated concentrations of C-reactive protein are typically all the abnormalities found. Lumbar puncture shows elevated levels of polymorphs (20-70% of cases) and occasionally raised eosinophil counts (0-30% of cases). CSF neopterin may be elevated.
The X ray changes are unique and charactistic of this syndrome. These changes include bony overgrowth due to premature ossification of the patella and the long bone epiphyses in very young children and bowing of long bones with widening and shortening periosteal reaction in older ones.
Audiometry shows a progressive sensineural deafness. Visual examination shows optic atrophy and an increase in the blind spot. CT is usually normal but may show enlargement of the ventricles. MRI with contrast may show enhancement of leptomeninges and cochlea consistent with chronic meningitis. EEG shows is non specific with slow waves and spike discharges.
Polymorphs tend to show increased expression of CD10.
According to a European registry study, the mean age at onset of symptoms was 26.3 years old. As per the criteria laid out by ESID (European Society for Immunodeficiencies) and PAGID (Pan-American Group for Immunodeficiency), CVID is diagnosed if:
- the person presents with a marked decrease of serum IgG levels (<4.5 g/L) and a marked decrease below the lower limit of normal for age in at least one of the isotypes IgM or IgA;
- the person is four years of age or older;
- the person lacks antibody immune response to protein antigens or immunization.
Diagnosis is chiefly by exclusion, i.e. alternative causes of hypogammaglobulinemia, such as X-linked agammaglobulinemia, must be excluded before a diagnosis of CVID can be made.
Diagnosis is difficult because of the diversity of phenotypes seen in people with CVID. For example, serum immunoglobulin levels in people with CVID vary greatly. Generally, people can be grouped as follows: no immunoglobulin production, immunoglobulin (Ig) M production only, or both normal IgM and IgG production. Additionally, B cell numbers are also highly variable. 12% of people have no detectable B cells, 12% have reduced B cells, and 54% are within the normal range. In general, people with CVID display higher frequencies of naive B cells and lower frequencies of class-switched memory B cells. Frequencies of other B cell populations, such as IgD memory B cells, transitional B cells, and CD21 B cells, are also affected, and are associated with specific disease features. Although CVID is often thought of as a serum immunoglobulin and B cell-mediated disease, T cells can display abnormal behavior. Affected individuals typically present with low frequencies of CD4, a T-cell marker, and decreased circulation of regulatory T cells and iNKT cell. Notably, approximately 10% of people display CD4 T cell counts lower than 200 cells/mm; this particular phenotype of CVID has been named LOCID (Late Onset Combined Immunodeficiency), and has a poorer prognosis than classical CVID.
Treatment is first with many different high-dose steroids, namely glucocorticoids. Then, if symptoms do not improve additional immunosuppression such as cyclophosphamide are added to decrease the immune system's attack on the body's own tissues. Cerebral vasculitis is a very rare condition that is difficult to diagnose, and as a result there are significant variations in the way it is diagnosed and treated.
The following types of CVID have been identified, and correspond to mutations in different gene segments.
Polymyositis, like dermatomyositis, strikes females with greater frequency than males.
The administration of immunotherapy, in association with chemotherapy or tumor removal, .
A 2008 literature review concluded that, "based on principles of evidence-based medicine and evaluations of methodology, there is only a 'possible' association [of celiac disease and peripheral neuropathy], due to lower levels of evidence and conflicting evidence. There is not yet convincing evidence of causality."