Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Pre-implantation genetic diagnosis (PGD or PIGD) is a technique used to identify genetically normal embryos and is useful for couples who have a family history of genetic disorders. This is an option for people choosing to procreate through IVF. PGD is considered difficult due to it being both time consuming and having success rates only comparable to routine IVF.
About 92% of pregnancies in Europe with a diagnosis of Down syndrome are terminated. In the United States, termination rates are around 67%, but this rate varied from 61% to 93% among different populations evaluated. When nonpregnant people are asked if they would have a termination if their fetus tested positive, 23–33% said yes, when high-risk pregnant women were asked, 46–86% said yes, and when women who screened positive are asked, 89–97% say yes.
Karyotyping involves performing an amniocentesis in order to study the cells of an unborn fetus during metophase 1. Light microscopy can be used to visually determine if aneuploidy is an issue.
Though the outcome for individuals with either form of the tetrasomy is highly variable, mosaic individuals consistently experience a more favourable outcome than those with the non-mosaic form. Some affected infants die shortly after birth, particularly those with the non-mosaic tetrasomy. Many patients do not survive to reproductive age, while others are able to function relatively normally in a school or workplace setting. Early diagnosis and intervention has been shown to have a strong positive influence on the prognosis.
In general, idic(15) occurs de novo but the parents must be karyotyped to make sure it is not inherited, mostly because this will affect the course of genetic counseling given to the family. If the abnormality is found prenatally and one of the parents harbour the marker, the child has a chance of not carrying the mutation. Further tests should however be done to prove the marker has not been rearranged while being inherited. This information is also necessary for counseling of future pregnancies. Each family is unique and should therefore be handled individually.
Diagnosis is usually based on clinical findings, although fetal chromosome testing will show trisomy 13. While many of the physical findings are similar to Edwards syndrome there are a few unique traits, such as polydactyly. However, unlike Edwards syndrome and Down syndrome, the quad screen does not provide a reliable means of screening for this disorder. This is due to the variability of the results seen in fetuses with Patau.
The extra chromosome in people with idic(15) can be easily detected through chromosome analysis (karyotyping). Additional tests are usually required. FISH (Fluorescent in situ hybridization) is used to confirm the diagnosis by distinguishing idic(15) from other supernumerary marker chromosomes. Array CGH can be used to determine the gene content and magnitude of copy number variation so that the clinical picture can be foreseen.
Interstitial duplications of chromosome 15 can be more difficult to detect on a routine chromosome analysis but are clearly identifiable using a 15q FISH study. Families should always discuss the results of chromosome and FISH studies with a genetic counselor or other genetics professionals to ensure accurate interpretation.
When screening tests predict a high risk of Down syndrome, a more invasive diagnostic test (amniocentesis or chorionic villus sampling) is needed to confirm the diagnosis. If Down syndrome occurs in one in 500 pregnancies and the test used has a 5% false-positive rate, this means, of 26 women who test positive on screening, only one will have Down syndrome confirmed. If the screening test has a 2% false-positive rate, this means one of eleven who test positive on screening have a fetus with DS. Amniocentesis and chorionic villus sampling are more reliable tests, but they increase the risk of miscarriage between 0.5 and 1%. The risk of limb problems is increased in the offspring due to the procedure. The risk from the procedure is greater the earlier it is performed, thus amniocentesis is not recommended before 15 weeks gestational age and chorionic villus sampling before 10 weeks gestational age.
Trisomy 9 can be detected prenatally with chorionic villus sampling and cordocentesis, and can be suggested by obstetric ultrasonography.
Because trisomy 9 may appear with mosaicism, it is suggested that doctors take samples from multiple tissues when karyotyping for diagnosis.
The vast majority of triple X women are never diagnosed, unless they undergo tests for other medical reasons later in life. Triple X can be diagnosed by a blood test which is able to look at a person’s chromosomes (karyotype). Abnormalities on the electroencephalography may be present.
Triple X syndrome can be diagnosed prenatally through amniocentesis or chorionic villus sampling. In Denmark, between 1970 and 1984, 76% of the prenatally diagnosed fetuses with triple-X were aborted. Between 1985-1987, this figure dropped to 56%. With improved information, the number of abortions diminished. In the Netherlands, between 1991 and 2000, 33% (18/54) of the couples that were confronted with a prenatal diagnosis of 47, XXX elected to abort. If balanced information is provided to prospective parents, prenatally, the incidence of voluntary termination (abortion) is reduced.
Since tetrasomy 9p is not usually inherited, the risk of a couple having a second child with the disorder is minimal. While patients often do not survive to reproductive age, those who do may or may not be fertile. The risk of a patient's child inheriting the disorder is largely dependent on the details of the individual's case.
Diagnosis is based on the distinctive cry and accompanying physical problems. These common symptoms are quite easily observed in infants. Affected children are typically diagnosed by a doctor or nurse at birth. Genetic counseling and genetic testing may be offered to families with individuals who have cri du chat syndrome. Prenatally the deletion of the cri du chat related region in the p arm of chromosome 5 can be detected from amniotic fluid or chorionic villi samples with BACs-on-Beads technology. G-banded karyotype of a carrier is also useful. Children may be treated by speech, physical and occupational therapists. Heart abnormalities often require surgical correction.
The duplication involved in PTLS is usually large enough to be detected through G-banding alone, though there is a high false negative rate. To ascertain the diagnosis when karyotyping results are unclear or negative, more sophisticated techniques such as subtelomeric fluorescent in-situ hybridization analysis and array comparative genomic hybridization (aCGH) may be used.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.
During pregnancy, women can be screened by chorionic villus sampling and amniocentesis to detect trisomy 16. With the advent of noninvasive techniques for detecting aneuploidy, prenatal screening with tests using Next Generation Sequencing can be utilised prior to invasive techniques. This can cause fetal growth retardation.
Emanuel Syndrome can be diagnosed with a karyotype, with FISH, or with a chromosomal microarray analysis. .
Triploidy may be suggested by dramatically elevated levels of serum alpha-fetoprotein. On obstetric ultrasonography, abnormalities of the skeleton, central nervous system, heart, abdomen, and kidneys are visible in the most severe cases beginning at 12-14 weeks of pregnancy. Placental abnormalities associated with a triploid pregnancy become visible at 12-14 weeks. Placentomegaly or intrauterine growth restriction are the typical findings that prompt evaluation for triploidy, though oligohydramnios may be the first sign in some cases. Placentomegaly is not pathognomonic for triploidy because in some cases, the placenta senesces.
Triploidy must be distinguished from trisomy 13 and trisomy 18, which may appear similar on sonography. Genetic testing allows for a definitive diagnosis.
Emanuel Syndrome does not have a cure, but individual symptoms may be treated. Assessments of individual systems, such as the cardiovascular, gastrointestinal, orthopedic, and neurological may be necessary to determine the extent of impairment and options for treatment.
Most fetuses with triploidy do not survive to birth, and those that do usually pass within days. As there is no treatment for Triploidy, palliative care is given if a baby survives to birth. If Triploidy is diagnosed during the pregnancy, termination is often offered as an option due to the additional health risks for the mother (preeclampsia, a life-threatening condition, or choriocarcinoma, a type of cancer). Should a mother decide to carry until term or until a spontaneous miscarriage occurs, doctors will monitor her closely in case either condition develops.
Mosaic triploidy has an improved prognosis, but affected individuals have moderate to severe cognitive disabilities.
Full trisomy 16 is incompatible with life and most of the time it results in miscarriage during the first trimester. This occurs when all of the cells in the body contain an extra copy of chromosome 16.
Genetic testing methods such as fluorescence in situ hybridization (FISH) and chromosomal microarray are available for diagnosing Dup15q syndrome and similar genetic disorders.
With the increase in genetic testing availability, more often duplications outside of the 15q11.2-13.1 region are being diagnosed. The global chromosome 15q11.2-13.1 duplication syndrome specific groups only provide medical information and research for chromosome 15q11.2-13.1 duplication syndrome and not the outlying 15q duplications.
Edwards syndrome occurs in about one in 5,000 live births, but more conceptions are affected by the syndrome because the majority of those diagnosed with the condition prenatally will not survive to birth. Although women in their 20s and early 30s may conceive babies with Edwards syndrome, the risk of conceiving a child with it increases with a woman's age. The average maternal age for conceiving a child with this disorder is 32½.
The general prognosis for girls with tetrasomy X is relatively good. Due to the variability of symptoms, some tetrasomy X girls are able to function normally, whereas others will need medical attention throughout their lives. Traditionally, treatment for tetrasomy X has been management of the symptoms and support for learning. Most girls are placed on estrogen treatment to induce breast development, arrest longitudinal growth, and stimulate bone formation to prevent osteoporosis. Speech, occupational, and physical therapy may also be needed depending on the severity of the symptoms.
The ring 20 abnormality may be limited to as few as 5% of cells, so a screen for chromosomal mosaicism is critical. Newer array technology will not detect the ring chromosome and the standard metaphase chromosome analysis has been recommended. A karyotype analysis examining at least 50 cells should be requested to properly detect mosaicism.
Most affected people have a stable clinical course but are often transfusion dependent.