Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The median age at diagnosis is 38 years. Women are at higher risk for developing breast cancer.
Surgical removal of the stomach (gastrectomy) is typically recommended after for people after 20 years of age, and before 40 years of age.
Detection usually begins with a routine doctor visit when the fundal height is being measured or during an ultrasound examination. When large for gestational age fetuses (LGA) are identified, there are two common causes: maternal diabetes or incorrect dates. However, if these two causes can be ruled out, an ultrasound is performed to detect for overgrowth and other abnormalities. At this point, it becomes essential for a clinical geneticist to assist in the correct selection of tests and possible diagnosis.
First signs of SGBS may be observed as early as 16 weeks of gestation. Aids to diagnosing might include the presence of macrosomia, polyhydramnios, elevated maternal serum-α-fetoprotein, cystic hygroma, hydrops fetalis, increased nuchal translucency, craniofacial abnormalities, visceromegaly, renal abnormalities, congenital diaphragmatic hernia, polydactyly, and a single umbilical artery.
If there is a known mutation in the family, prenatal testing is available. Prenatal testing is also possible by looking for evidence of the mild SGBS phenotype in the mother and the positive SGBS phenotype in male family members. Family members who are positive of SGBS may undergo mutational analysis of genes GCP3, GCP4, and CXORF5. Genomic balance in Xp22 and Xq26 may also be analyzed through array comparative genomic hybridization.
Due to the high percentage of male deaths during the neonatal period, early detection of tumors is crucial. In order to detect the presence of tumors, screening in SGBS patients should include abdominal ultrasound, urinalysis, and biochemical markers that screen for embryonic tumors.
Once the infant is born, possibility of hypoglycemia must be assessed along with cardiac, genitalia, liver, and adrenal evaluations. Such tests include chest radiographs, electrocardiogram, echocardiogram, renal sonography, and abdominal sonography to test for possible abnormalities.
There are two types of SGBS, each found on a different gene:
SGBS is also considered to be an overgrowth syndrome (OGS). OGS is characterized by a 2-3 standard deviation increase in weight, height, or head circumference above the average for sex and age. One of the most noted features of OGS is the increased risk of neoplasms in certain OGSs. SGBS in particular has been found to have a 10% tumor predisposition frequency with 94% of cases occurring in the abdominal region, most being malignant. It is common for tumors to be embryonal in type and appear before the age of 10.
There are five different types of tumors that patients with SGBS might develop, all intra-abdominal: Wilms tumor, Hepatoblastoma, Hepatocarcinoma, Gonadoblastoma, and Neuroblastoma.
The most common types of tumors developed in patients are the Wilms tumor and hepatoblastoma.
Tests are either conducted at birth, or later in early childhood via: fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA), array comparative genomic hybridization (aCGH), and EHMT1 sequencing.
FISH is a screening test that uses multicolour probes or comparative genomic hybridization to find any chromosome irregularities in a genome. It can be used for gene mapping, detecting aneuploidy, locating tumours etc. The multicolour probes attach to a certain DNA fragment. MLPA is a test that finds and records DNA copy change numbers through the use of PCR. MLPA can be used to detect tumours in the glial cells of the brain, as well as chromosomal abnormalities. Array-based comparative genomic hybridization (aCGH) tracks chromosome deletions and or amplifications using fluorescent dyes on genomic sequences of DNA samples. The DNA samples (which are 25-80 base pairs in length) are then placed on slides to be observed under microscope. Lastly, EHMT1 sequencing is a process in which a single-strand of DNA from the EHMT1 gene is removed, and DNA polymerase is added in order to synthesize complementary strands. In turn, this allows scientists to map out a person's DNA sequence allowing for a diagnosis to be made.
1. Clinical Genetics and Genetic Testing
Genetic testing is necessary to confirm the diagnosis of PMS. A prototypical terminal deletion of 22q13 can be uncovered by karyotype analysis, but many terminal and interstitial deletions are too small to detect with this method. Chromosomal microarray should be ordered in children with suspected developmental delays or ASD. Most cases will be identified by microarray; however, small variations in genes might be missed. The falling cost for whole exome sequencing may replace DNA microarray technology for candidate gene evaluation. Biological parents should be tested with fluorescence "in situ" hybridization (FISH) to rule out balanced translocations or inversions. Balanced translocation in a parent increases the risk for recurrence and heritability within families (figure 3).
Clinical genetic evaluations and dysmorphology exams should be done to evaluate growth, pubertal development, dysmorphic features (table 1) and screen for organ defects (table 2)
2. Cognitive and Behavioral Assessment
All patients should undergo comprehensive developmental, cognitive and behavioral assessments by clinicians with experience in developmental disorders. Cognitive evaluation should be tailored for individuals with significant language and developmental delays. All patients should be referred for specialized speech/language, occupational and physical therapy evaluations.
3. Neurological Management
Individuals with PMS should be followed by a pediatric neurologist regularly to monitor motor development, coordination and gait, as well as conditions that might be associated with hypotonia. Head circumference should be performed routinely up until 36 months. Given the high rate of seizure disorders (up to 41% of patients) reported in the literature in patients with PMS and its overall negative impact on development, an overnight video EEG should be considered early to rule out seizure activity. In addition, a baseline structural brain MRI should be considered to rule out the presence of structural abnormalities.
4. Nephrology
All patients should have a baseline renal and bladder ultrasonography and a voiding cystourethrogram should be considered to rule out structural and functional abnormalities. Renal abnormalities are reported in up to 38% of patients with PMS. Vesicouretral reflux, hydronephrosis, renal agenesis, dysplasic kidney, polycystic kidney and recurrent urinary tract infections have all been reported in patients with PMS.
5. Cardiology
Congenital heart defects (CHD) are reported in samples of children with PMS with varying frequency (up to 25%)(29,36). The most common CHD include tricuspid valve regurgitation, atrial septal defects and patent ductus arteriousus. Cardiac evaluation, including echocardiography and electrocardiogram, should be considered.
6. Gastroenterology
Gastrointestinal symptoms are common in individuals with PMS. Gastroesophageal reflux, constipation, diarrhea and cyclic vomiting are frequently described.
Table 3: Clinical Assessment Recommendations in Phelan McDermid Syndrome.
In general, idic(15) occurs de novo but the parents must be karyotyped to make sure it is not inherited, mostly because this will affect the course of genetic counseling given to the family. If the abnormality is found prenatally and one of the parents harbour the marker, the child has a chance of not carrying the mutation. Further tests should however be done to prove the marker has not been rearranged while being inherited. This information is also necessary for counseling of future pregnancies. Each family is unique and should therefore be handled individually.
Due to its recent discovery, there are currently no existing treatments for Kleefstra syndrome.
Pre-implantation genetic diagnosis (PGD or PIGD) is a technique used to identify genetically normal embryos and is useful for couples who have a family history of genetic disorders. This is an option for people choosing to procreate through IVF. PGD is considered difficult due to it being both time consuming and having success rates only comparable to routine IVF.
The extra chromosome in people with idic(15) can be easily detected through chromosome analysis (karyotyping). Additional tests are usually required. FISH (Fluorescent in situ hybridization) is used to confirm the diagnosis by distinguishing idic(15) from other supernumerary marker chromosomes. Array CGH can be used to determine the gene content and magnitude of copy number variation so that the clinical picture can be foreseen.
Interstitial duplications of chromosome 15 can be more difficult to detect on a routine chromosome analysis but are clearly identifiable using a 15q FISH study. Families should always discuss the results of chromosome and FISH studies with a genetic counselor or other genetics professionals to ensure accurate interpretation.
Medical diagnosis is required. Clinical tests can be performed, as well as molecular genetic testing. The available tests include:
Sequence analysis of the entire coding region
- Severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN) - Sanger Sequencing: Diagnosis, Mutation Confirmation, Pre-symptomatic, Risk Assessment, Screening
- Craniosynostosis: Diagnosis
- Invitae FGFR3-Related Disorders Test: Pre-symptomatic, Diagnosis, Therapeutic management
Mutation scanning of select exons
- Skeletal Dysplasia Panel: Diagnosis, Prognostic
Sequence analysis of select exons
- Severe Achondroplasia with Developmental Delay and Acanthosis Nigricans (SADDAN, FGFR3): Diagnosis, Mutation Confirmation, Risk Assessment
- Severe Achondroplasia, Developmental Delay, Acanthosis Nigricans: Diagnosis, Mutation Confirmation
Deletion/duplication analysis
- Invitae FGFR3-Related Disorders Test: Pre-symptomatic, Diagnosis, Therapeutic management
Life with SADDAN is manageable, although therapy, surgery, and lifelong doctor surveillance may be required.
Blastomere biopsy is a technique in which blastomeres are removed from the zona pellucida. It is commonly used to detect aneuploidy. Genetic analysis is conducted once the procedure is complete. Additional studies are needed to assess the risk associated with the procedure.
Differential diagnosis includes Angelman syndrome, Mowat–Wilson syndrome and Rett syndrome.
Since Duane-radial ray syndrome is a genetic disorder, a genetic test would be performed. One test that can be used is the SALL4 sequence analysis that is used to detect if SALL4 is present. If there is no pathogenic variant observed, a deletion/duplication analysis can be ordered following the SALL4 sequence analysis. As an alternative, another genetic test called a multi-gene panel can be ordered to detect SALL4 and any other genes of interest. The methods used for this panel vary depending on the laboratory.
MRI imaging can be used to detect whether the abducens nerve is present.
Children with WAGR syndrome receive regular (3-4 yearly) kidney surveillance for Wilms' tumour until at least the age of 6–8 years and thereafter remain under some follow-up because of the risk of late onset nephropathy (40% of patients over the age of 12 years). Females with WAGR syndrome may have streak ovaries, which can increase the risk for gonadoblastoma. Malformations of the vagina and/or uterus may also be present.
Because the variability of this disease is so great and the way that it reveals itself could be multi-faceted; once diagnosed, a multidisciplinary team is recommended to treat the disease and should include a craniofacial surgeon, ophthalmologist, pediatrician, pediatric urologist, cardiologist, pulmonologist, speech pathologist, and a medical geneticist. Several important steps must be followed, as well.
- Past medical history
- Physical examination with special attention to size and measurements of facial features, palate, heart, genitourinary system and lower respiratory system
- Eye evaluation
- Hypospadias assessment by urologist
- Laryngoscopy and chest x-ray for difficulties with breathing/swallowing
- Cleft lip/palate assessment by craniofacial surgeon
- Assessment of standard age developmental and intellectual abilities
- Anal position assessment
- Echocardiogram
- Cranial imaging
Many surgical repairs may be needed, as assessed by professionals. Furthermore, special education therapies and psychoemotional therapies may be required, as well. In some cases, antireflux drugs can be prescribed until risk of breathing and swallowing disorders are removed. Genetic counseling is highly advised to help explain who else in the family may be at risk for the disease and to help guide family planning decisions in the future.
Because of its wide variability in which defects will occur, there is no known mortality rate specifically for the disease. However, the leading cause of death for people with Opitz G/BBB syndrome is due to infant death caused by aspiration due to esophageal, pharyngeal or laryngeal defects.
Fortunately, to date there are no factors that can increase the expression of symptoms of this disease. All abnormalities and symptoms are present at birth.
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. Since it is a genetic disease, it is an inherited condition. However, there is an extremely wide variability in how the disease presents itself.
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child’s needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member.
Diagnosis is made by showing a mutation in the TCF4 gene.
Around 50% of those affected show abnormalities on brain imaging. These include hypoplastic corpus callosum with a missing rostrum and posterior part of the splenium with bulbous caudate nuclei bulging towards the frontal horns.
Electroencephalograms show an excess of slow components.
All have low levels of immunoglobulin M (IgM) but features of an immunodeficiency are absent.
Bloom syndrome is diagnosed using any of three tests - the presence of quadriradial (Qr, a four-armed chromatid interchange) in cultured blood lymphocytes, and/or the elevated levels of Sister chromatid exchange in cells of any type, and/or the mutation in the BLM gene. The US Food and Drug Administration (FDA) announced on February 19, 2015 that they have authorized marketing of a direct-to-consumer genetic test from 23andMe. The test is designed to identify healthy individuals who carry a gene that could cause Bloom Syndrome in their offspring.
The duplication involved in PTLS is usually large enough to be detected through G-banding alone, though there is a high false negative rate. To ascertain the diagnosis when karyotyping results are unclear or negative, more sophisticated techniques such as subtelomeric fluorescent in-situ hybridization analysis and array comparative genomic hybridization (aCGH) may be used.
Treatment of cause: Due to the genetic cause, no treatment of the cause is possible.
Treatment of manifestations: routine treatment of ophthalmologic, cardiac, and neurologic findings; speech, occupational, and physical therapies as appropriate; specialized learning programs to meet individual needs; antiepileptic drugs or antipsychotic medications as needed.
Surveillance: routine pediatric care; routine developmental assessments; monitoring of specific identified medical issues.
Electroencephalography (EEG) in one patient showed epileptiformic activities in the frontal and frontotemporal areas as well as increased spike waves while the patient was sleeping. Another patient's EEG showed occipital rhythms in background activity that was abnormal, focal discharges over the temporal lobe, and multifocial epileptiform activity. Several patients showed a loss of normal background activity.
Magnetic Resonance Imaging (MRI) in one family showed mild atrophy of the cranial vermis as well as a small pons. Different types of atrophy including cerebellar in four individuals and basal ganglia has been evident through MRIs.
In 2015 the first consensus guidelines for the diagnosis and treatment of chordoma were published in the Lancet Oncology.
In one study, the 10-year tumor free survival rate for sacral chordoma was 46%. Chondroid chordomas appear to have a more indolent clinical course.
In most cases, complete surgical resection followed by radiation therapy offers the best chance of long-term control. Incomplete resection of the primary tumor makes controlling the disease more difficult and increases the odds of recurrence. The decision whether complete or incomplete surgery should be performed primarily depends on the anatomical location of the tumor and its proximity to vital parts of the central nervous system.
Chordomas are relatively radioresistant, requiring high doses of radiation to be controlled. The proximity of chordomas to vital neurological structures such as the brain stem and nerves limits the dose of radiation that can safely be delivered. Therefore, highly focused radiation such as proton therapy and carbon ion therapy are more effective than conventional x-ray radiation.
There are no drugs currently approved to treat chordoma, however a clinical trial conducted in Italy using the PDGFR inhibitor Imatinib demonstrated a modest response in some chordoma patients. The same group in Italy found that the combination of imatinib and sirolimus caused a response in several patients whose tumors progressed on imatinib alone.