Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment depends on the anatomy of the malformation as determined by angiography or Magnetic Resonance Imaging (MRI).
Antenatal corticosteroids have a role in reducing incidence of germinal matrix hemorrhage in premature infants.
The U.S. Preventive Services Task Force recommends a single screening ultrasound for abdominal aortic aneurysm in males age 65 to 75 years who have a history of smoking. There is an estimated number needed to screen of approximately 850 people. It is unclear if screening is useful in women aged 65 to 75 who have smoked and they recommend against screening in women who have never smoked.
Repeat ultrasounds should be carried out in those who have an aortic size greater than 3.0 cm. In those whose aorta is between 3.0 and 3.9 cm this should be every three years, if between 4.0 and 4.4 cm every two year, and if between 4.5 and 5.4 cm every year.
In the United Kingdom one time screening is recommended in all males over 65 years of age. Australia has no guideline on screening.
Diagnosis of IIA is based on finding an intracranial aneurysm on vascular imaging in the presence of predisposing infectious conditions. Positive bacterial cultures from blood or the infected aneurysm wall itself may confirm the diagnosis, however blood cultures are often negative. Other supporting findings include leukocytosis, an elevated erythrocyte sedimentation rate and elevated C-reactive protein in blood.
IIAs are uncommon, accounting for 2.6% to 6% of all intracranial aneurysms in autopsy studies.
Testing for a malformed vein of Galen is indicated when a patient has heart failure which has no obvious cause. Diagnosis is generally achieved by signs such as cranial bruits and symptoms such as expanded facial veins. The vein of Galen can be visualized using ultrasound or Doppler. A malformed Great Cerebral Vein will be noticeably enlarged. Ultrasound is a particularly useful tool for vein of Galen malformations because so many cases occur in infancy and ultrasound can make diagnoses prenatally. Many cases are diagnosed only during autopsy as congestive heart failure occurs very early.
Once suspected, intracranial aneurysms can be diagnosed radiologically using magnetic resonance or CT angiography. But these methods have limited sensitivity for diagnosis of small aneurysms, and often cannot be used to specifically distinguish them from infundibular dilations without performing a formal angiogram. The determination of whether an aneurysm is ruptured is critical to diagnosis. Lumbar puncture (LP) is the gold standard technique for determining aneurysm rupture (subarachnoid hemorrhage). Once an LP is performed, the CSF is evaluated for RBC count, and presence or absence of xanthochromia.
Four grades are distinguished (by imaging or histology):
- grade I - hemorrhage is confined to the germinal matrix
- grade II - intraventricular hemorrhage without ventricular dilatation
- grade III - intraventricular hemorrhage with ventricular dilatation
- grade IV - intraventricular rupture and hemorrhage into the surrounding white matter
Diagnosis of a ruptured cerebral aneurysm is commonly made by finding signs of subarachnoid hemorrhage on a computed tomography (CT) scan. If the CT scan is negative but a ruptured aneurysm is still suspected based on clinical findings, a lumbar puncture can be performed to detect blood in the cerebrospinal fluid. Computed tomography angiography (CTA) is an alternative to traditional angiography and can be performed without the need for arterial catheterization. This test combines a regular CT scan with a contrast dye injected into a vein. Once the dye is injected into a vein, it travels to the cerebral arteries, and images are created using a CT scan. These images show exactly how blood flows into the brain arteries.
Splenic rupture is usually evaluated by FAST ultrasound of the abdomen. Generally this is not specific to splenic injury; however, it is useful to determine the presence of free floating blood in the peritoneum. A diagnostic peritoneal lavage, while not ideal, may be used to evaluate the presence of internal bleeding a person who is hemodynamically unstable. The FAST exam typically serves to evaluate the need to perform a CT. Computed tomography with IV contrast is the preferred imaging study as it can provide high quality images of the full peritoneal cavity.
Diagnosis is often suspected in patients "in extremis" (close to death) with abdominal trauma or with relevant risk-factors. Diagnosis is confirmed quickly in the Emergency room by ultrasound or CT scan.
Patients can lower their risk for vulnerable plaque rupture in the same ways that they can cut their heart attack risk: Optimize lipoprotein patterns, keep blood glucose levels low normal (see HbA1c), stay slender, eat a proper diet, quit smoking, and maintain a regular exercise program. Researchers also think that obesity and diabetes may be tied to high levels of C-reactive protein.
Mortality from aortic rupture is up to 90%. 65–75% of patients die before they arrive at hospital and up to 90% die before they reach the operating room.
American Association for the Surgery of Trauma Organ Injury Scaling: Splenic Injury Grading
Renal aneurysms are very rare consisting of only 0.1–0.09% while rupture is even more rare. Conservative treatment with control of concomitant hypertension being the primary option with aneurysms smaller than 3 cm. If symptoms occur, or enlargement of the aneurysm, then endovascular or open repair should be considered. Pregnant women (due to high rupture risk of up to 80%) should be treated surgically.
Abdominal aortic aneurysms are commonly divided according to their size and symptomatology. An aneurysm is usually defined as an outer aortic diameter over 3 cm (normal diameter of the aorta is around 2 cm), or more than 50% of normal diameter. If the outer diameter exceeds 5.5 cm, the aneurysm is considered to be large.
A ruptured AAA is a clinical diagnosis involving the presence of the triad of abdominal pain, shock, and a pulsatile abdominal mass. If these conditions are present, indicating AAA rupture, no further clinical investigations are needed before surgery.
Death occurs immediately after traumatic rupture of the thoracic aorta 75%–90% of the time since bleeding is so severe, and 80–85% of patients die before arriving at a hospital. Of those who live to reach a hospital, 23% die at the time of or shortly after arrival. In the US, an estimated 7,500–8,000 cases occur yearly, of which 1,000–1,500 make it to a hospital alive; these low numbers make it difficult to estimate the efficacy of surgical options. However, if surgery is performed in time, it can offer a chance of survival.
Though there is a concern that a small, stable tear in the aorta could enlarge and cause complete rupture of the aorta and heavy bleeding, this may be less common than previously believed as long as the patient's blood pressure does not get too high.
The development of accurate and reliable non-invasive ICP measurement methods for VIIP has the potential to benefit many patients on earth who need screening and/or diagnostic ICP measurements, including those with hydrocephalus, intracranial hypertension, intracranial hypotension, and patients with cerebrospinal fluid shunts. Current ICP measurement techniques are invasive and require either a lumbar puncture, insertion of a temporary spinal catheter, insertion of a cranial ICP monitor, or insertion of a needle into a shunt reservoir.
Outcomes depend on the size of the aneurysm. Small aneurysms (less than 7 mm) have a low risk of rupture and increase in size slowly. The risk of rupture is less than a percent for aneurysms of this size.
The prognosis for a ruptured cerebral aneurysm depends on the extent and location of the aneurysm, the person's age, general health, and neurological condition. Some individuals with a ruptured cerebral aneurysm die from the initial bleeding. Other individuals with cerebral aneurysm recover with little or no neurological deficit. The most significant factors in determining outcome are the Hunt and Hess grade, and age. Generally patients with Hunt and Hess grade I and II hemorrhage on admission to the emergency room and patients who are younger within the typical age range of vulnerability can anticipate a good outcome, without death or permanent disability. Older patients and those with poorer Hunt and Hess grades on admission have a poor prognosis. Generally, about two-thirds of patients have a poor outcome, death, or permanent disability.
The condition is difficult to detect and may go unnoticed, because many patients have no specific symptoms. Diagnosis is further complicated by the fact that many patients with the injury experienced multiple other serious injuries as well, so the attention of hospital staff may be distracted from the possibility of aortic rupture. In fact most cases occur along with other injuries.
A common symptom is unusually high blood pressure in the upper body and very low blood pressure in lower limbs. Another symptom is renal failure where the creatinine level shoots very high and urine output becomes negligible. In most cases, however, the doctors would misinterpret renal failure as due to issues with the kidney itself and may recommend dialysis.
Though not completely reliable, chest X-rays are the first-line treatment, initially used to diagnose this condition when the patient is unstable and cannot be sent to the CT bay. The preferred method of diagnosis used to be CT angiogram until it was found to cause complications in some people; now it is reserved for when CT scans are inconclusive.
The classical findings on a chest X-ray will be widened mediastinum, apical cap, and displacement of the trachea, left main bronchus, or nasogastric tube. A normal chest x-ray does not exclude transection, but will diagnose conditions such as pneumothorax or hydrothorax. The aorta may also be torn at the point where it is connected to the heart. The aorta may be completely torn away from the heart, but patients with such injuries rarely survive very long after the injury; thus it is much more common for hospital staff to treat patients with partially torn aortas. When the aorta is partially torn, it may form a "pseudoaneurysm". In patients who do live long enough to be seen in a hospital, a majority have only a partially torn blood vessel, with the outermost adventitial layer still intact. In some of these patients, the adventitia and nearby structures within the chest may serve to prevent severe bleeding. After trauma, the aorta can be assessed by a CT angiogram or a direct angiogram, in which contrast is introduced into the aorta via a catheter.
While a single ruptured plaque can be identified during autopsy as the cause of a coronary event, there is currently no way to identify a culprit lesion before it ruptures.
Because artery walls typically enlarge in response to enlarging plaques, these plaques do not usually produce much stenosis of the artery lumen. Therefore, they are not detected by cardiac stress tests or angiography, the tests most commonly performed clinically with the goal of predicting susceptibility to future heart attack. In contrast to conventional angiography, cardiac CT angiography does enable visualization of the vessel wall as well as plaque composition. Some of the CT derived plaque characteristics can help predict for acute coronary syndrome. In addition, because these lesions do not produce significant stenoses, they are typically not considered "critical" and/or interventionable by interventional cardiologists, even though research indicates that they are the more important lesions for producing heart attacks.
The tests most commonly performed clinically with the goal of testing susceptibility to future heart attack include several medical research efforts, starting in the early to mid-1990s, using intravascular ultrasound (IVUS), thermography, near-infrared spectroscopy, careful clinical follow-up, and other methods, to predict these lesions and the individuals most prone to future heart attacks. These efforts remain largely research with no useful clinical methods to date (2006). Furthermore, the usefulness of detecting individual vulnerable plaques by invasive methods has been questioned because many "vulnerable" plaques rupture without any associated symptoms and it remains unclear if the risk of invasive detection methods is outweighed by clinical benefit.
Another approach to detecting and understanding plaque behavior, used in research and by a few clinicians, is to use ultrasound to non-invasively measure wall thickness (usually abbreviated IMT) in portions of larger arteries closest to the skin, such as the carotid or femoral arteries. While stability vs. vulnerability cannot be readily distinguished in this way, quantitative baseline measurements of the thickest portions of the arterial wall (locations with the most plaque accumulation). Documenting the IMT, location of each measurement and plaque size, a basis for tracking and partially verifying the effects of medical treatments on the progression, stability, or potential regression of plaque, within a given individual over time, may be achieved.
If diagnosed within the first few hours of presentation, the pooling blood may be evacuated using a syringe. Once the blood has clotted, removal by this method is no longer possible and the clot can be removed via an incision over the lump under local anesthetic. The incision is not stitched, but will heal very well. Care needs to be taken in regard to bleeding from the wound and possible infection with fecal bacteria. If left alone it will usually heal within a few days or weeks. The topical application of a cream containing a Heparinoid is often advised to clear the clot .
Fluorescein angiography is usually performed for diagnosis and follow-up of patients with POHS.
CNV can be detected by using a type of perimetry called preferential hyperacuity perimetry. On the basis of fluorescein angiography, CNV may be described as classic or occult. Two other tests that help identify the condition include indocyanine green angiography and optical coherence tomography.
Diagnosis of PIC can be difficult because the appearance may be similar to other conditions and types of posterior uveitis, especially other forms of the so called white dot syndromes. The diagnosis is made by eliminating all the other possibilities by careful examination by an experienced ophthalmologist, aided with visual field testing and Fluorescein angiography (an intra-venous dye used to show the blood vessels at the back of the eye).
It is important that the correct diagnosis is made because treatment may be quite different for apparently similar conditions.