Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The risk of meningioma can be reduced by maintaining a normal body weight, and by avoiding unnecessary dental x-rays.
Observation with close imaging follow-up may be used in select cases if a meningioma is small and asymptomatic. In a retrospective study on 43 patients, 63% of patients were found to have no growth on follow-up, and the 37% found to have growth at an average of 4 mm / year. In this study, younger patients were found to have tumors that were more likely to have grown on repeat imaging; thus are poorer candidates for observation. In another study, clinical outcomes were compared for 213 patients undergoing surgery vs. 351 patients under watchful observation. Only 6% of the conservatively treated patients developed symptoms later, while among the surgically treated patients, 5.6% developed persistent morbid condition, and 9.4% developed surgery-related morbid condition.
Observation is not recommended in tumors already causing symptoms. Furthermore, close follow-up with imaging is required with an observation strategy to rule out an enlarging tumor.
Medical imaging plays a central role in the diagnosis of brain tumors. Early imaging methods – invasive and sometimes dangerous – such as pneumoencephalography and cerebral angiography have been abandoned in favor of non-invasive, high-resolution techniques, especially magnetic resonance imaging (MRI) and computed tomography (CT) scans. Neoplasms will often show as differently colored masses (also referred to as processes) in CT or MRI results.
- Benign brain tumors often show up as hypodense (darker than brain tissue) mass lesions on CT scans. On MRI, they appear either hypodense or isointense (same intensity as brain tissue) on T1-weighted scans, or hyperintense (brighter than brain tissue) on T2-weighted MRI, although the appearance is variable.
- Contrast agent uptake, sometimes in characteristic patterns, can be demonstrated on either CT or MRI scans in most malignant primary and metastatic brain tumors.
- Pressure areas where the brain tissue has been compressed by a tumor also appear hyperintense on T2-weighted scans and might indicate the presence a diffuse neoplasm due to an unclear outline. Swelling around the tumor known as "peritumoral edema" can also show a similar result.
This is because these tumors disrupt the normal functioning of the BBB and lead to an increase in its permeability. However, it is not possible to diagnose high- versus low-grade gliomas based on enhancement pattern alone.
The definitive diagnosis of brain tumor can only be confirmed by histological examination of tumor tissue samples obtained either by means of brain biopsy or open surgery. The histological examination is essential for determining the appropriate treatment and the correct prognosis. This examination, performed by a pathologist, typically has three stages: interoperative examination of fresh tissue, preliminary microscopic examination of prepared tissues, and follow-up examination of prepared tissues after immunohistochemical staining or genetic analysis.
The majority of patients can be expected to be cured of their disease and become long-term survivors of central neurocytoma. As with any other type of tumor, there is a chance for recurrence. The chance of recurrence is approximately 20%. Some factors that predict tumor recurrence and death due to progressive states of disease are high proliferative indices, early disease recurrence, and disseminated disease with or without the spread of disease through the cerebral spinal fluid. Long-term follow up examinations are essential for the evaluation of the outcomes that each treatment brings about. It is also essential to identify possible recurrence of CN. It is recommended that a cranial MRI is performed between every 6–12 months.
Anaplastic astrocytoma, Astrocytoma, Central neurocytoma, Choroid plexus carcinoma, Choroid plexus papilloma, Choroid plexus tumor, Dysembryoplastic neuroepithelial tumour, Ependymal tumor, Fibrillary astrocytoma, Giant-cell glioblastoma, Glioblastoma multiforme, Gliomatosis cerebri, Gliosarcoma, Hemangiopericytoma, Medulloblastoma, Medulloepithelioma, Meningeal carcinomatosis, Neuroblastoma, Neurocytoma, Oligoastrocytoma, Oligodendroglioma, Optic nerve sheath meningioma, Pediatric ependymoma, Pilocytic astrocytoma, Pinealoblastoma, Pineocytoma, Pleomorphic anaplastic neuroblastoma, Pleomorphic xanthoastrocytoma, Primary central nervous system lymphoma, Sphenoid wing meningioma, Subependymal giant cell astrocytoma, Subependymoma, Trilateral retinoblastoma.
In order to remove it completely, surgery may be an option.It relieves the hydrocephalus (excess water in the brain) about half of the time.
Another treatment is chemotherapy, recommended for patients with severe problem.
Treatment of choroid plexus carcinoma depends on the location and severity of the tumor. Possible interventions include inserting shunts, surgical resection, radiotherapy, and chemotherapy. Inserting a shunt could help to drain the CSF and relieve pressure on the brain. The best outcomes occur when total resection of the tumor is combined with adjuvant chemotherapy and radiotherapy. In the event of subtotal resection or widespread leptomeningeal disease, craniospinal irradiation is often used.
Choroid plexus papillomas are benign tumors that are usually cured by surgery; malignant progression has been rarely reported.
Surgical excision of the central neurocytoma is the primary consensus among practicing physicians. The surgeons perform a craniotomy to remove the tumor. The ability to remove the tumor and to what extent it is removed is dependent upon the location of the tumor and surgeon experience and preference. The extent of the disease plays a large part in determining how effective the surgery will be. The main goal of a complete surgical resection, of the tumor, can also be hindered by the adherence of the tumor to adjoining structures or hemorrhages. If there is a recurrence of the central neurocytoma, surgery is again the most notable treatment.
Several different types of magnetic resonance imaging (MRI) may be employed in diagnosis: MRI without contrast, Gd contrast enhanced T1-weighted MRI (GdT1W) or T2-weighted enhanced MRI (T2W or T2*W). Non-contrast enhanced MRI is considerably less expensive than any of the contrast enhanced MRI scans. The gold standard in diagnosis is GdT1W MRI.
The reliability of non-contrast enhanced MRI is highly dependent on the sequence of scans, and the experience of the operator.
Choroid plexus tumors have an annual incidence of about 0.3 per 1 million cases.
It is seen mainly in children under the age of 5, representing 5% of all pediatric tumors and 20% of tumors in children less than 1 year old. There has been no link between sex and occurrence.
Although choroid plexus carcinomas are significantly more aggressive and have half the survival rate as choroid plexus papillomas, they are outnumbered in incidence by 5:1 in all age groups. Clinical studies have shown that patients who receive a total resection of a tumor have a 86% survival rate, while patients who only receive a partial resection have a 26% 5-year survival rate. Many incomplete resections result in recurrence within 2 years of primary surgery.
Because of the rarity of these tumors, there is still a lot of unknown information. There are many case studies that have been reported on patients who have been diagnosed with this specific type of tumor. Most of the above information comes from the findings resulting from case studies.
Since Papillary Tumors of the Pineal Region were first described in 2003, there have been seventy cases published in the English literature. Since there is such a small number of cases that have been reported, the treatment guidelines have not been established. A larger number of cases that contain a longer clinical follow-up are needed to optimize the management of patients with this rare disease.
Even though there is a general consensus on the morphology and the immunohistochemical characteristics that is required for the diagnosis, the histological grading criteria have yet to be fully defined and its biological behavior appears to be variable. This specific type of tumor appears to have a high potential for local recurrence with a high tumor bed recurrence rate during the five years after the initial surgery. This suggests the need for a tumor bed boost radiotherapy after surgical resection.
As stated above, the specific treatment guidelines have not yet been established, however, gross total resection of the tumor has been the only clinical factor associated overall and progression-free survival. The value of radiotherapy as well as chemotherapy on disease progression will need to be investigated in future trials. With this information, it will provide important insight into long-term management and may further our understanding of the histologic features of this tumor.
The auditory brainstem response (ABR) test gives information about the inner ear (cochlea) and nerve pathways for hearing via ongoing electrical activity in the brain measured by electrodes placed on the scalp. Five different waves (I to V) are measured for each ear. Each waveform represents specific anatomical points along the auditory neural pathway. Delays of one side relative to the other suggest a lesion in cranial nerve VIII between the ear and brainstem or in the brainstem itself. The most reliable indicator for acoustic neuromas from the ABR is the interaural latency differences in wave V: the latency in the impaired ear is prolonged. Different studies have indicated the sensitivity of ABR for detection of acoustic neuromas 1cm or larger to be between 90 and 95%. Sensitivity for neuromas smaller than 1cm are 63-77%. A newer technology, stacked ABR, may have sensitivity as high as 95% with specificity 88% for smaller tumors. ABR is considerably more cost effective, but MRI provides more information.
Stapedius reflex (SR) and caloric vestibular response (CVR) are non-invasive otologic tests for auditory neural function. These are not primary diagnostics for CPA neuromas, and are usually used in conjunction
with ABR.
Internationally tumors of the choroid plexus are rare, accounting for 0.4-0.6% of all intracranial neoplasms. It most commonly affects young children under the age of 5 with a mean patient age of 5.2 years.
The clinical and pathology differential are different. From a pathology perspective, an endolymphatic sac tumor needs to be separated from metastatic renal cell carcinoma, metastatic thyroid papillary carcinoma, middle ear adenoma, paraganglioma, choroid plexus papilloma, middle ear adenocarcinoma, and ceruminous adenoma.
From a pathology perspective, several tumors need to be considered in the differential diagnosis, including paraganglioma, ceruminous adenoma, metastatic adenocarcinoma, and meningioma.
Wide excision is the treatment of choice, although attempting to preserve hearing. Based on the anatomic site, it is difficult to completely remove, and so while there is a good prognosis, recurrences or persistence may be seen. There is no metastatic potential. Patients who succumb to the disease, usually do so because of other tumors within the von Hippel-Lindau complex rather than from this tumor.
Choroid plexus tumors are a rare type of cancer that occur from the brain tissue called choroid plexus of the brain. These tumors usually occur in children younger than 2 years and are classified according to the WHO classification of the tumors of the central nervous system:
- Choroid plexus carcinoma (WHO grade III)
- Choroid atypical plexus papilloma (WHO grade II)
- Choroid plexus papilloma (WHO grade I)
Symptoms vary depending on the size and location of the tumor and typically include headaches, nausea and vomiting, irritability, and decreased energy.
Papillary tumors of pineal region are extremely rare, constituting 0.4-1% of all central nervous system tumors. These tumors most commonly occur in adults with the mean age being 31.5. There have been cases reported for people between the ages 5 to 66 years. There is a slight predominance of females who have these tumors.
Bilateral vestibular schwannomas are diagnostic of NF2.
NF II can be diagnosed with 65% accuracy prenatally with chorionic villus sampling or amniocentesis.
Depending on the grade of the sarcoma, it is treated with surgery, chemotherapy and/or radiotherapy.
It is very difficult to treat glioblastoma due to several complicating factors:
- The tumor cells are very resistant to conventional therapies.
- The brain is susceptible to damage due to conventional therapy.
- The brain has a very limited capacity to repair itself.
- Many drugs cannot cross the blood–brain barrier to act on the tumor.
Treatment of primary brain tumors and brain metastases consists of both symptomatic
and palliative therapies.
Genetic counseling is often recommended to provide more information about fetal CPCs, to answer questions and concerns, and to outline available options such as amniocentesis or a blood test from the mother. There is a possible association between ultrasound-detected fetal CPCs and Trisomy 18. It is not correlated to the presence of Trisomy 21 (Down syndrome).
Generally the risks are very low if there are no other risk factors. If no additional abnormalities are detected by a thorough "level II" ultrasound, the likelihood the fetus has trisomy 18 is very low.
A meta-analysis of 8 studies between 1990 and 2000 with choroid plexus cysts that were identified in second-trimester (an incidence of 1.2%). The incidence of the cysts in women younger than 35 was 1% (n=1017). The study found no cases of trisomy 18 in fetuses with cysts whose mother was younger than 35. The study concluded that "there is no evidence that detection of isolated choroid plexus cyst in women who are <35 years of age increases the risk of trisomy 18".
Other factors which may have a bearing on the baby's chances of developing chromosome problems include:
- mother's age at the expected date of delivery
- the results of serum screening; XAFP triple testing or quad screening
- evidence of other "fetal findings" seen at the time of the ultrasound that may suggest a chromosome problem
Ferner et al. give three sets of diagnostic criteria for NF2:
1. Bilateral vestibular schwannoma (VS) or family history of NF2 plus Unilateral VS or any two of: meningioma, glioma, neurofibroma, schwannoma, posterior subcapsular lenticular opacities
2. Unilateral VS plus any two of meningioma, glioma, neurofibroma, schwannoma, posterior subcapsular lenticular opacities
3. Two or more meningioma plus unilateral VS or any two of glioma, schwannoma and cataract.
Another set of diagnostic criteria is the following:
- Detection of bilateral acoustic neuroma by imaging-procedures
- First degree relative with NF II and the occurrence of neurofibroma, meningiomas, glioma, or Schwannoma
- First degree relative with NF II and the occurrence of juvenile posterior subcapsular cataract.
The criteria have varied over time.
A 2014 investigation made a screening of various drugs for anti-glioblastoma activity and identified 22 drugs with potent anti-glioblastoma activity, including the combination of irinotecan and statins.