Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Microlissencephaly can be diagnosed by prenatal MRI. MRI is better than ultrasound when it comes to detecting microlissencephaly or MSGP prenatally.
The ideal time for proper prenatal diagnosis is between the 34th and 35th gestational week which is the time when the secondary gyration normally terminates. In microlissencephaly cases, the primary sulci would be unusually wide and flat while secondary sulci would be missing.
At birth, lissencephaly with a head circumference of less than minus three standard deviations (< –3 SD) is considered microlissencephaly.
Although genetic diagnosis in patients with MLIS is challenging, exome sequencing has been suggested to be a powerful diagnostic tool.
Microlissencephaly is considered a more severe form than microcephaly with simplified gyral pattern. Microlissencephaly is characterized by a smooth cortical surface (absent sulci and gyri) with a thickened cortex (> 3 mm) and is usually associated with other congenital anomalies. Microcephaly with a simplified gyral pattern has too few sulci and normal cortical thickness (3 mm) and is usually an isolated anomaly.
The diagnosis is usually based on clinical features present at birth.
Ultrasound in the second trimester may show abnormalities associates with NLS, including polyhydramnios, intrauterine growth restriction, microcephaly, proptosis and decreased fetal motility.
The diagnosis of Kaufman oculocerebrofacial syndrome can be achieved via molecular testing approaches. Additionally to ascertain if the individual has the condition:
- Growth assessment
- Thyroid function evaluation
- Kidney ultrasound
- Echocardiogram
There is no known cure for microcephaly. Treatment is symptomatic and supportive.
Kaufman oculocerebrofacial syndrome differential diagnosis consists of:
The prognosis is poor; affected individuals are either stillborn or die shortly after birth. The longest survival reported in literature is of 134 days.
This syndrome is transmitted as an autosomal recessive disorder and there is a risk for recurrence of 25% in future pregnancies.
The prognosis for individuals with schizencephaly varies depending on the size of the clefts and the degree of neurological deficit.
Though it is only definitively diagnosed by a genetic test, autosomal dominant porencephaly type I can be suspected if the disease is known to run in the family or if someone shows symptoms. CT scanning or MRI may be useful in indicating a diagnosis. COL4A1 may be mutated in other diseases that need to be distinguished, including brain small vessel disease with hemorrhage and HANAC syndrome. CADASIL syndrome is caused by a mutation in a different gene, but may cause similar symptoms. Sporadic porencephaly is another disorder that can appear similar.
Treatment for autosomal dominant porencephaly type I is based on the symptoms that an individual is experiencing - for example, treatment of seizures with anticonvulsants. It is particularly important for individuals with this disorder and hypertension to control their blood pressure, as they are at higher risk of stroke. Other stroke prevention treatments include avoiding anticoagulants, smoking, and situations that may lead to head trauma.
Diagnosing colpocephaly prenatally is difficult because in many cases signs start to appear after birth. Prenatal diagnosis is made by detecting enlargement of either or both occipital horns of the lateral ventricles. Usually prenatal ultrasounds don't show cephalic abnormalities and in cases that they do show abnormality is of low accuracy, making it difficult to diagnose colpocephaly. Often, abnormalities in prenatal ultrasounds can be misdiagnosed as hydrocephalus.
In some cases, the defect is linked to mutations of the EMX2, SIX3, and Collagen, type IV, alpha 1 genes. Because having a sibling with schizencephaly has been statistically shown to increase risk of the disorder, it is possible that there is a heritable genetic component to the disease.
Even though clinical diagnostic criteria have not been 100 percent defined for genitopatellar syndrome, the researchers stated that the certain physical features could relate to KAT6B mutation and result in the molecular genetic testing. The researchers stated that the Individuals with two major features or one major feature and two minor features are likely to have a KAT6B mutation.
To diagnose the Genitopatellar Syndrome, there are multiple ways to evaluate.
Medical genetics consultation
- Evaluation by developmental specialist
- Feeding evaluation
- Baseline hearing evaluation
- Thyroid function tests
- Evaluation of males for cryptorchidism
- Orthopedic evaluation if contractures are present or feet/ankles are malpositioned
- Hip radiographs to evaluate for femoral head dislocation
- Renal ultrasound examination for hydronephrosis and cysts
- Echocardiogram for congenital heart defects
- Evaluation for laryngomalacia if respiratory issues are present
- Evaluation by gastroenterologist as needed, particularly if bowel malrotation is suspected
After birth, MR imaging can be done to look for cephalic abnormalities. This is the most commonly used method for diagnosing colpocephaly. Physicians look for abnormally large occipital horns of the lateral ventricles and diminished thickness of white matter. Spinal tapping is not a preferred method for diagnosis because newborn babies with colpocephaly or hydrocephaly have open fontanelles which makes it difficult to collect CSF. Also, colpocephaly is not associated with increased pressure.
After the dropping of atomic bombs "Little Boy" on Hiroshima and "Fat Man" on Nagasaki, several women close to ground zero who had been pregnant at the time gave birth to children with microcephaly. Microcephaly prevalence was seven of a group of 11 pregnant women at 11–17 weeks of gestation who survived the blast at less than from ground zero. Due to their proximity to the bomb, the pregnant women's "in utero" children received a biologically significant radiation dose that was relatively high due to the massive neutron output of the lower explosive-yielding Little Boy. Microcephaly is the only proven malformation, or congenital abnormality, found in the children of Hiroshima and Nagasaki.
Vaccinating the majority of the population is effective at preventing congenital rubella syndrome.
Craniometaphyseal dysplasia is diagnosed based on clinical and radiographic findings that include hyperostosis. Some things such as cranial base sclerosis and nasal sinuses obstruction can be seen during the beginning of the child's life. In radiographic findings the most common thing that will be found is the narrowing of foramen magnum and the widening of long bones. Once spotted treatment is soon suggested to prevent further compression of the foramen magnum and disabling conditions.
Microhydranencephaly (MHAC) is a severe abnormality of brain development characterized by both microcephaly and hydranencephaly. Signs and symptoms may include severe microcephaly, scalp rugae (a series of ridges), and profound developmental delay. Familial occurrence of the condition is very rare but it has been reported in a few families. It has been suggested that MHAC is possibly inherited in an autosomal recessive manner.
FHS shares some common features with Rubinstein–Taybi (due to overlapping effects of mutations on SRCAP), however cranial and hand anomalies are distinctive: broad thumbs, narrow palate, and microcephaly are absent in Floating-Harbor Syndrome. One child in the UK has a diagnosis of microcephaly alongside Floating–Harbor syndrome.
Until recently, doctors have diagnosed patients with FHS based on clinical observations and how well they fit the disease description, usually occurring in early childhood. Molecular genetic testing is also used now to test for genetic mutations. By performing a sequence analysis test of select exons, mutations can be detected in exon 34 of the SRCAP gene. This mutation has been observed in 19 patients to date.
In most cases, if the patient shows classic facial features of FHS, the molecular testing will show a mutation on the SRCAP gene.
Treatment of Aicardi syndrome primarily involves management of seizures and early/continuing intervention programs for developmental delays.
Additional comorbidities and complications sometimes seen with Aicardi syndrome include porencephalic cysts and hydrocephalus, and gastro-intestinal problems. Treatment for porencephalic cysts and/or hydrocephalus is often via a shunt or endoscopic of the cysts, though some require no treatment. Placement of a feeding tube, fundoplication, and surgeries to correct hernias or other gastrointestinal structural problems are sometimes used to treat gastro-intestinal issues.
Aicardi syndrome is typically characterized by the following triad of features - however, one of the "classic" features being missing does not preclude a diagnosis of Aicardi Syndrome, if other supporting features are present.
1. Partial or complete absence of the corpus callosum in the brain (agenesis of the corpus callosum);
2. Eye abnormalities known as "lacunae" of the retina that are quite specific to this disorder; [optic nerve coloboma]]; and
3. The development in infancy of seizures that are called infantile spasms.
Other types of defects of the brain such as microcephaly, polymicrogyria, porencephalic cysts and enlarged cerebral ventricles due to hydrocephalus are also common in Aicardi syndrome.
The only treatment for this disorder is surgery to reduce the compression of cranial nerves and spinal cord. However, bone regrowth is common since the surgical procedure can be technically difficult. Genetic counseling is offered to the families of the people with this disorder.
Researchers are also investigating the genetic similarities between Dubowitz Syndrome and Smith-Lemli-Opitz syndrome (SLOS). Patients with SLOS and Dubowitz syndromes experience many of the same abnormalities, and the two disorders are hypothesized to be linked. A characteristic of SLOS is a low cholesterol level and a high 7-dehydrocholesterol level. Cholesterol is essential for several key functions of the body, including cell membrane structure, embryogenesis, and steroid and sex hormone synthesis. Impaired cholesterol biosynthesis or transport possibly accounts for most of the symptoms of both SLOS and Dubowitz. Although only a few patients with Dubowitz Syndrome have been identified with altered cholesterol levels, researchers are exploring whether Dubowitz Syndrome, like SLOS, carries a link to a defect in the cholesterol biosynthetic pathway.
The exact biochemical pathology of the disease is still under research because of the low prevalence of the disease and the wide array of symptoms associated with it. Several studies have focused on different aspects of the disease to try to find its exact cause and expression. One study examined the specific oral features in one patient. Another found abnormalities in the brain, such as corpus callosum dysgenesis, an underdeveloped anterior pituitary and a brain stalk with an ectopic neurohypophysis.
Nicolaides–Baraitser syndrome (NCBRS) is a rare genetic condition caused by de novo missense mutations in the SMARCA2 gene and has only been reported in less than 100 cases worldwide. NCBRS is a distinct condition and well recognizable once the symptoms have been identified.