Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
For children less than 1 year, the American Heart Association recommends performing cycles of 5 back blows (or slaps) followed by 5 chest compressions. These cycles of 5 back blows then 5 chest compressions are repeated until the object comes out of the infant's airway or until the infant becomes unresponsive. If the infant becomes unresponsive, the American Heart Association recommends starting CPR. The reason that abdominal thrusts are not recommended in children less than 1 year is because they can cause liver damage.
Providers such as pediatricians and dentists can provide information to parents and caregivers about what food and toys are appropriate by age to prevent choking. The American Academy of Pediatricians recommends waiting until 6 months of age before introducing solid foods to infants. Caregivers can supervise children while eating or playing. Also, caregivers can avoid giving children younger than 5 foods that pose a high risk of choking such as hot dog pieces, cheese sticks, cheese chunks, hard candy, nuts, grapes, marshmallows, or popcorn. Parents, teachers, child care providers, and other caregivers for children get training in choking first aid and cardiopulmonary resuscitation (CPR).
In the US, manufacturers of children's toys and products must follow requirements to prevent choking and include appropriate warning labels. However, toys that are resold may not be marked with warning labels. Caregivers can try to prevent choking by considering the features of a toy (such as size, shape, consistency, small parts) before giving it to a child. Children's products that are found to pose a choking risk can be recalled.
If a horse is suspected of choke, a veterinarian will often pass a stomach tube down the animal's esophagus to determine if there is a blockage. Failure to access the stomach with the tube indicates a complete obstruction; difficulty passing the tube may represent a stenosis, or narrowing; or a partial obstruction. Radiography and endoscopy are also used in refractory cases.
If the person is awake and able to breathe often all that is requires is providing extra oxygen while the operating room is prepared for bronchoscopy.
If a children less than one and is unable to breathe at all then five back blows followed by five chest thrusts should be done. In children over the age of one abdominal thrusts are recommended.
If this is not effective than bag mask ventilation is recommended. Next laryngoscopy can be tried to look and see if the foreign body can be removed. If the above is not effective than intubation or cricothyrotomy can be tried.
Choking horses should be deprived of food and drink pending veterinary attention, so as not to increase the obstructive load within the esophagus. The veterinarian will often sedate the horse and administer spasmolytics, such as butylscopolamine, to help the esophagus to relax. Once the muscles of the esophagus no longer force the food down the throat (active peristalsis), it may slip down on its own accord. If spasmolytics do not solve the problem, the veterinarian will usually pass a stomach tube through one of the nostrils and direct it into the esophagus until the material is reached, at which point "gentle" pressure is applied to manually push the material down. Gentle warm water lavage (water sent through the stomach tube, to soften the food material) may be required to help the obstructing matter pass more easily, but caution should be exercised to prevent further aspiration of fluid into the trachea.
Refractory cases are sometimes anesthetised, with an orotracheal tube placed to prevent further aspiration and to allow for more vigorous lavage. Disruption of the impacted material can sometimes be achieved via endoscopy. If these methods still do not lead to results, the horse may require surgery to remove the material.
Some workers have advocated the use of oxytocin in choke, on the grounds that it decreases the esophageal muscular tone. However, this technique is not suitable in pregnant mares, as it may lead to abortion.
Families who are impacted by SIDS should be offered emotional support and grief counseling. The experience and manifestation of grief at the loss of an infant are impacted by cultural and individual differences.
The most effective diagnostic strategy is to perform laryngoscopy during an episode, at which time abnormal movement of the cords, if present, can be observed. If the endoscopy is not performed during an episode, it is likely that the vocal folds will be moving normally, a 'false negative' finding.
Spirometry may also be useful to establish the diagnosis of VCD when performed during a crisis or after a nasal provocation test. With spirometry, just as the expiratory loop may show flattening or concavity when expiration is affected in asthma, so may the Inspiratory loop show truncation or flattening in VCD. Of course, testing may well be negative when symptoms are absent.
In one study, peanuts were the most common obstruction. In addition to peanuts, hot dogs, and grapes, latex balloons are also a serious choking hazard in children that can result in death. A latex balloon will conform to the shape of the trachea, blocking the airway and making it difficult to expel with the Heimlich maneuver.
The symptoms of VCD are often inaccurately attributed to asthma, which in turn results in the unnecessary and futile intake of corticosteroids, bronchodilators and leukotriene modifiers, although there are instances of comorbidity of asthma and VCD.
The differential diagnosis for vocal cord dysfunction includes vocal fold swelling from allergy, asthma, or some obstruction of the vocal folds or throat. Anyone suspected of this condition should be evaluated and the vocal folds (voice box) visualized. In individuals who experience a persistent difficulty with inhaling, consideration should be given to a neurological cause such as brain stem compression, cerebral palsy, etc.
The main difference between VCD and asthma is the audible stridor or wheezing that occurs at different stages of the breath cycle: VCD usually causes stridor on the inhalation, while asthma results in wheezing during exhalation. Patients with asthma usually respond to the usual medication and see their symptoms resolve. Clinical measures that can be done to differentiate VCD from asthma include:
- rhinolaryngoscopy: A patient with asthma will have normal vocal cord movement, while one with VCD will display vocal cord abduction during inhalation
- spirometry: A change in the measure following the administration of a bronchodilator is suggestive of asthma rather than VCD
- chest radiography: The presence of hyperinflation and peribronchial thickening are indicative of asthma, as patients with VCD will show normal results.
A large investigation into diphtheria-tetanus-pertussis vaccination and potential SIDS association by Berlin School of Public Health, Charité – Universitätsmedizin Berlin concluded: "Increased DTP immunisation coverage is associated with decreased SIDS mortality. Current recommendations on timely DTP immunisation should be emphasised to prevent not only specific infectious diseases but also potentially SIDS."
Many other studies have also reached conclusions that vaccinations reduce the risk of SIDS. Studies generally show that SIDS risk is approximately halved by vaccinations.
Minor laryngospasm will generally resolve spontaneously in the majority of cases.
Laryngospasm in the operating room is treated by hyperextending the patient's neck and administering assisted ventilation with 100% oxygen. In more severe cases it may require the administration of an intravenous muscle relaxant, such as Succinylcholine, and reintubation.
When Gastroesophageal Reflux Disease (GERD) is the trigger, treatment of GERD can help manage laryngospasm. Proton pump inhibitors such as Dexlansoprazole (Dexilant), Esomeprazole (Nexium), and Lansoprazole (Prevacid) reduce the production of stomach acids, making reflux fluids less irritant. Prokinetic agents reduce the amount of acid available by stimulating movement in the digestive tract.
Spontaneous laryngospasm can be treated by staying calm and breathing slowly, instead of gasping for air. Drinking (tiny sips) of ice water to wash away any irritants that may be the cause of the spasm can also help greatly.
Patients who are prone to laryngospasm during illness can take measures to prevent irritation such as antacids to avoid acid reflux, and constantly drinking water or tea keep the area clear of irritants.
Additionally, laryngospasms can result from hypocalcemia, causing muscle spasms and/or tetany. Na+ channels remain open even if there is very little increase in the membrane potential. This affects the small muscles of the vocal folds.
One treatment for obstructive hypopnea is continuous positive airway pressure (CPAP). CPAP is a treatment in which the patient wears a mask over the nose and/or mouth. An air blower forces air through the upper airway. The air pressure is adjusted so that it is just enough to maintain the oxygen saturation levels in the blood. Another treatment is sometimes a custom fitted oral appliance. The American Academy of Sleep Medicine's protocol for obstructive sleep apnea (OSA) recommends oral appliances for those who prefer them to CPAP and have mild to moderate sleep apnea or those that do not respond to/cannot wear a CPAP. Severe cases of OSA may be treated with an oral appliance if the patient has had a trial run with a CPAP. Oral Appliances should be custom made by a dentist with training in dental sleep medicine. Mild obstructive hypopnea can often be treated by losing weight or by avoiding sleeping on one's back. Also quitting smoking, and avoiding alcohol, sedatives and hypnotics (soporifics) before sleep can be quite effective. Surgery is generally a last resort in hypopnea treatment, but is a site-specific option for the upper airway. Depending on the cause of obstruction, surgery may focus on the soft palate, the uvula, tonsils, adenoids or the tongue. There are also more complex surgeries that are performed with the adjustment of other bone structures - the mouth, nose and facial bones.
Asphyxia or asphyxiation is a condition of severely deficient supply of oxygen to the body that arises from abnormal breathing. An example of asphyxia is choking. Asphyxia causes generalized hypoxia, which affects primarily the tissues and organs. There are many circumstances that can induce asphyxia, all of which are characterized by an inability of an individual to acquire sufficient oxygen through breathing for an extended period of time. Asphyxia can cause coma or death.
In 2015 about 9.8 million cases of unintentional suffocation occurred which resulted in 35,600 deaths. The word asphyxia is from Ancient Greek "without" and , "squeeze" (throb of heart).
When laryngospasm is coincident with a cold or flu, it may be helpful for some sufferers to take acid reflux medication to limit the irritants in the area. If a cough is present, then treat a wet cough; but limit coughing whenever possible, as it is only likely to trigger a spasm. Drink water or tea to keep the area from drying up. Saline drops also help to keep the area moist. Pseudoephederine may also help to clear any mucus that may cause coughing and thereby triggering more spasms.
Hypopnea is a disorder that may result in excessive daytime sleepiness and compromised quality of life, including traffic accidents, diminished productivity in the workplace, and emotional problems.
Cardiovascular consequences of hypopnea may include myocardial infarction, stroke, psychiatric problems, impotence, cognitive dysfunction, hypertension, coronary heart disease, and memory loss.
Perinatal asphyxia is the medical condition resulting from deprivation of oxygen (hypoxia) to a newborn infant long enough to cause apparent harm. It results most commonly from a drop in maternal blood pressure or interference during delivery with blood flow to the infant's brain. This can occur as a result of inadequate circulation or perfusion, impaired respiratory effort, or inadequate ventilation. There has long been a scientific debate over whether newborn infants with asphyxia should be resuscitated with 100% oxygen or normal air. It has been demonstrated that high concentrations of oxygen lead to generation of oxygen free radicals, which have a role in reperfusion injury after asphyxia. Research by Ola Didrik Saugstad and others led to new international guidelines on newborn resuscitation in 2010, recommending the use of normal air instead of 100% oxygen.
General treatment principles are removal from exposure, protection of the airway (i.e., preemptive intubation), and treatment of hypoxemia. Concomitant airway injury with acute bronchospasm often warrants treatment with bronchodilators because of the airway obstruction.
A beneficial role for corticosteroids has not been established by controlled trials in humans. Despite the lack of controlled evidence of efficacy, anecdotal reports of benefits from systemic corticosteroid use continue to appear.
Prophylactic antibiotic drugs have not proved to be efficacious in toxic lung injury. Antibiotics should be reserved for those patients with clinical evidence of infection.
Oximetry, which may be performed over one or several nights in a person's home, is a simpler, but less reliable alternative to a polysomnography. The test is only recommended when requested by a physician and should not be used to test those without symptoms. Home oximetry may be effective in guiding prescription for automatically self-adjusting continuous positive airway pressure.
Pseudodysphagia is the irrational fear of swallowing or choking. The symptoms are psychosomatic. The act of swallowing becomes mentally linked with choking or with undercapacity of the esophageal opening. This can induce panic reactions before or during the act of swallowing. The sensation of difficult swallowing feels authentic to the affected individual, although it is based on nothing in reality. It is important that dysphagia (difficult or painful swallowing) be ruled out before a diagnosis of pseudodysphagia is made.
Fear of choking is associated with anxiety, depression, panic attacks, hypochondriasis, and weight loss. The condition can occur in children and adults; it is equally common among males and females. Quality of life can be severely affected. Avoidance of restaurants or social settings is common, since sometimes food can only be taken in small bites or with liquid.
Characterization of idiopathic dysphagia as psychosomatic has recently been challenged by published case reports documenting instances of "pseudodysphagia" patients suffering from the little-known entity Omohyoid muscle syndrome. Should this syndrome be found to have a spectrum of severity (particularly if mild cases of OMS do not demonstrate the typical transient soft neck mass), the medical community may need to consider ruling out this subtle, truly somatic etiology before arriving at true pseudodysphagia, the latter being essentially a diagnosis of exclusion.
"Fire-eater's lung" is an important variant of hydrocarbon pneumonitis, which typically involves adolescents or young adults who are exposed through mishap during flame-blowing performances using a variety of different flammable materials. The substances used overlap with some of the pediatric exposures (kerosene, gasoline) but can also include other hydrocarbons such as jet fuel and, in France, an aromatic hydrocarbon enriched petroleum-distillate called "kerdan". There has also been a case of citronella oil aspiration in a fire-eater. As with hydrocarbon pneumonitis in children, fire-eater's lung can also be complicated by pneumatocele. Although the term "acute lipoid pneumonia" has been used to refer to the "fire-eater's lung" syndrome, this is a misnomer.
Excess body weight is thought to be an important cause of sleep apnea. In weight loss studies of obese and overweight individuals, those who lose weight show reduced apnea frequencies and improved Apnoea–Hypopnoea Index (AHI) compared to controls.
Phagophobia is a psychogenic dysphagia, a fear of swallowing. It is expressed in various swallowing complaints without any apparent physical reason detectable by physical inspection and laboratory analyses. An obsolete term for this condition is choking phobia, but it was suggested that the latter term is confusing and it is necessary to distinguish the fear of swallowing (i.e., of the propulsion of bolus) from fear of choking.
Phagophobia is classified as a specific phobia and according to DSM-IV classification it belongs to the category of "other phobias". Phagophobia may lead to (and be confused with) fear of eating, and the subsequent malnutrition and weight loss. In milder cases a phagophobe eats only soft and liquid foods.
Strangling is compression of the neck that may lead to unconsciousness or death by causing an increasingly hypoxic state in the brain. Fatal strangling typically occurs in cases of violence, accidents, and is one of two main ways that hanging may cause death (alongside breaking the victim's neck).
Strangling does not have to be fatal; limited or interrupted strangling is practised in erotic asphyxia, in the choking game, and is an important technique in many combat sports and self-defence systems.
Strangling can be divided into three general types according to the mechanism used:
- Hanging—Suspension from a cord wound around the neck
- Ligature strangulation—Strangulation without suspension using some form of cord-like object called a garrote
- Manual strangulation—Strangulation using the fingers or other extremity
Strangling involves one or several mechanisms that interfere with the normal flow of oxygen into the brain:
- Compression of the carotid arteries or jugular veins—causing cerebral ischemia.
- Compression of the laryngopharynx, larynx, or trachea—causing asphyxia.
- Stimulation of the carotid sinus reflex—causing bradycardia, hypotension, or both.
Depending on the particular method of strangulation, one or several of these typically occur in combination; vascular obstruction is usually the main mechanism. Complete obstruction of blood flow to the brain is associated with irreversible neurological damage and death, but during strangulation there is still unimpeded blood flow in the vertebral arteries. Estimates have been made that significant occlusion of the carotid arteries and jugular veins occurs with a pressure of around , while the trachea demands six times more at approximately .
As in all cases of strangulation, the rapidity of death can be affected by the susceptibility to carotid sinus stimulation. Carotid sinus reflex death is sometimes considered a mechanism of death in cases of strangulation, but it remains highly disputed. The reported time from application to unconsciousness varies from 7–14 seconds if effectively applied to one minute in other cases, with death occurring minutes after unconsciousness.
Treatment depends on the underlying cause. Treatments include iced saline, and topical vasoconstrictors such as adrenalin or vasopressin. Selective bronchial intubation can be used to collapse the lung that is bleeding. Also, endobronchial tamponade can be used. Laser photocoagulation can be used to stop bleeding during bronchoscopy. Angiography of bronchial arteries can be performed to locate the bleeding, and it can often be embolized. Surgical option is usually the last resort, and can involve, removal of a lung lobe or removal of the entire lung. Non–small-cell lung cancer can also be treated with erlotinib or gefitinib. Cough suppressants can increase the risk of choking.