Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Neonatal sepsis of the newborn is an infection that has spread through the entire body. The inflammatory response to this systematic infection can be as serious as the infection itself. In infants that weigh under 1500 g, sepsis is the most common cause of death. Three to four percent of infants per 1000 births contract sepsis. The mortality rate from sepsis is near 25%. Infected sepsis in an infant can be identified by culturing the blood and spinal fluid and if suspected, intravenous antibiotics are usually started. Lumbar puncture is controversial because in some cases it has found not to be necessary while concurrently, without it estimates of missing up to one third of infants with meningitis is predicted.
For sexually active women who are not pregnant, screening is recommended in those under 25 and others at risk of infection. Risk factors include a history of chlamydial or other sexually transmitted infection, new or multiple sexual partners, and inconsistent condom use. For pregnant women, guidelines vary: screening women with age or other risk factors is recommended by the U.S. Preventive Services Task Force (USPSTF) (which recommends screening women under 25) and the American Academy of Family Physicians (which recommends screening women aged 25 or younger). The American College of Obstetricians and Gynecologists recommends screening all at risk, while the Centers for Disease Control and Prevention recommend universal screening of pregnant women. The USPSTF acknowledges that in some communities there may be other risk factors for infection, such as ethnicity. Evidence-based recommendations for screening initiation, intervals and termination are currently not possible. For men, the USPSTF concludes evidence is currently insufficient to determine if regular screening of men for chlamydia is beneficial. They recommend regular screening of men who are at increased risk for HIV or syphilis infection.
In the United Kingdom the National Health Service (NHS) aims to:
1. Prevent and control chlamydia infection through early detection and treatment of asymptomatic infection;
2. Reduce onward transmission to sexual partners;
3. Prevent the consequences of untreated infection;
4. Test at least 25 percent of the sexually active under 25 population annually.
5. Retest after treatment.
Symptoms and the isolation of the virus pathogen the upper respiratory tract is diagnostic. Virus identification is specific immunologic methods and PCR. The presence of the virus can be rapidly confirmed by the detection of the virus antigen. The methods and materials used for identifying the RSV virus has a specificity and sensitivity approaching 85% to 95%. Not all studies confirm this sensitivity. Antigen detection has comparatively lower sensitivity rates that approach 65% to 75%.
Diagnosis can be achieved through blood cultures, or cultures of other bodily fluids such as sputum. Bone marrow culture can often yield an earlier diagnosis, but is usually avoided as an initial diagnostic step because of its invasiveness.
Many people will have anemia and neutropenia if bone marrow is involved. MAC bacteria should always be considered in a person with HIV infection presenting with diarrhea.
The diagnosis requires consistent symptoms with two additional signs:
- Chest X-ray or CT scan showing evidence of right middle lobe (or left lingular lobe) lung infection
- Sputum culture or bronchoalveolar lavage culture demonstrating the infection is caused by MAC
Disseminated MAC is most readily diagnosed by one positive blood culture. Blood cultures should be performed in patients with symptoms, signs, or laboratory abnormalities compatible with mycobacterium infection. Blood cultures are not routinely recommended for asymptomatic persons, even for those who have CD4+ T-lymphocyte counts less than 100 cells/uL.
People infected with CMV develop antibodies to it, initially IgM later IgG indicating current infection and immunity respectively. If the virus is detected in the blood, saliva, urine or other body tissues, it means that the person has an active infection.
When infected with CMV, most women have no symptoms, but some may have symptoms resembling mononucleosis. Women who develop a mononucleosis-like illness during pregnancy should consult their medical provider.
The Centers for Disease Control and Prevention (CDC) does not recommend routine maternal screening for CMV infection during pregnancy because there is no test that can definitively rule out primary CMV infection during pregnancy. Women who are concerned about CMV infection during pregnancy should practice CMV prevention measures.Considering that the CMV virus is present in saliva, urine, tears, blood, mucus, and other bodily fluids, frequent hand washing with soap and water is important after contact with diapers or oral secretions, especially with a child who is in daycare or interacting with other young children on a regular basis.
A diagnosis of congenital CMV infection can be made if the virus is found in an infant's urine, saliva, blood, or other body tissues during the first week after birth. Antibody tests cannot be used to diagnose congenital CMV; a diagnosis can only be made if the virus is detected during the first week of life. Congenital CMV cannot be diagnosed if the infant is tested more than one week after birth.
Visually healthy infants are not routinely tested for CMV infection although only 10–20% will show signs of infection at birth though up to 80% may go onto show signs of prenatal infection in later life. If a pregnant woman finds out that she has become infected with CMV for the first time during her pregnancy, she should have her infant tested for CMV as soon as possible after birth.
Isolation is the implementation of isolating precautions designed to prevent transmission of microorganisms by common routes in hospitals. (See Universal precautions and Transmission-based precautions.) Because agent and host factors are more difficult to control, interruption of transfer of microorganisms is directed primarily at transmission for example isolation of infectious cases in special hospitals and isolation of patient with infected wounds in special rooms also isolation of joint transplantation patients on specific rooms.
Use of male condoms or female condoms may help prevent the spread of trichomoniasis, although careful studies have never been done that focus on how to prevent this infection. Infection with Trichomoniasis through water is unlikely because "Trichomonas vaginalis" dies in water after 45–60 minutes, in thermal water after 30 minutes to 3 hours and in d urine after 5–6 hours.
Currently there are no routine standard screening requirements for the general U.S. population receiving family planning or STI testing. The Centers for Disease Control and Prevention (CDC) recommends Trichomoniasis testing for females with vaginal discharge and can be considered for females at higher risk for infection or of HIV-positive serostatus.
The advent of new, highly specific and sensitive trichomoniasis tests present opportunities for new screening protocols for both men and women. Careful planning, discussion, and research are required to determine the cost-efficiency and most beneficial use of these new tests for the diagnosis and treatment of trichomoniasis in the U.S., which can lead to better prevention efforts.
A number of strategies have been found to improve follow-up for STI testing including email and text messaging as reminders of appointments.
The CDC states that PCR testing from a single blood draw is not sufficiently sensitive for "B." "henselae" testing, and can result in high false negative rates due to a small sample volume and levels below the limit of molecular detection.
"Bartonella" spp. are fastidious, slow-growing bacteria that are difficult to grow using traditional solid agar plate culture methods due to complex nutritional requirements and potentially a low number of circulating bacteria. This conventional method of culturing "Bartonella" spp. from blood inoculates plated directly onto solid agar plates requires an extended incubation period of 21 days due to the slow growth rate.
In addition to hand washing, gloves play an important role in reducing the risks of transmission of microorganisms. Gloves are worn for three important reasons in hospitals. First, they are worn to provide a protective barrier for personnel, preventing large scale contamination of the hands when touching blood, body fluids, secretions, excretions, mucous membranes, and non-intact skin. In the United States, the Occupational Safety and Health Administration has mandated wearing gloves to reduce the risk of bloodborne pathogen infections. Second, gloves are worn to reduce the likelihood that microorganisms present on the hands of personnel will be transmitted to patients during invasive or other patient-care procedures that involve touching a patient's mucous membranes and nonintact skin. Third, they are worn to reduce the likelihood that the hands of personnel contaminated with micro-organisms from a patient or a fomite can transmit those micro-organisms to another patient. In this situation, gloves must be changed between patient contacts, and hands should be washed after gloves are removed.
Wearing gloves does not replace the need for handwashing, because gloves may have small, undtectable defects or may be torn during use, and hands can become contaminated during removal of gloves. Failure to change gloves between patient contacts is an infection control hazard.
"Bartonella" growth rates improve when cultured in an enrichment inoculation step in a liquid insect-based medium such as "Bartonella" α-Proteobacteria Growth Medium (BAPGM) or Schneider’s Drosophila-based insect powder medium. Several studies have optimized the growing conditions of "Bartonella" spp. cultures in these liquid media, with no change in bacterial protein expressions or host interactions "in vitro". Insect-based liquid media supports the growth and co-culturing of at least seven "Bartonella" species, reduces bacterial culturing time and facilitates PCR detection and isolation of "Bartonella" spp. from animal and patient samples. Research shows that DNA may be detected following direct extraction from blood samples and become negative following enrichment culture, thus PCR is recommended after direct sample extraction and also following incubation in enrichment culture. Several studies have successfully optimized sensitivity and specificity by using PCR amplification (pre-enrichment PCR) and enrichment culturing of blood draw samples, followed by PCR (post-enrichment PCR) and DNA sequence identification.
When physical examination of the newborn shows signs of a vertically transmitted infection, the examiner may test blood, urine, and spinal fluid for evidence of the infections listed above. Diagnosis can be confirmed by culture of one of the specific pathogens or by increased levels of IgM against the pathogen.
The diagnosis of genital chlamydial infections evolved rapidly from the 1990s through 2006. Nucleic acid amplification tests (NAAT), such as polymerase chain reaction (PCR), transcription mediated amplification (TMA), and the DNA strand displacement amplification (SDA) now are the mainstays. NAAT for chlamydia may be performed on swab specimens sampled from the cervix (women) or urethra (men), on self-collected vaginal swabs, or on voided urine. NAAT has been estimated to have a sensitivity of approximately 90% and a specificity of approximately 99%, regardless of sampling from a cervical swab or by urine specimen. In women seeking an STI clinic and a urine test is negative, a subsequent cervical swab has been estimated to be positive in approximately 2% of the time.
At present, the NAATs have regulatory approval only for testing urogenital specimens, although rapidly evolving research indicates that they may give reliable results on rectal specimens.
Because of improved test accuracy, ease of specimen management, convenience in specimen management, and ease of screening sexually active men and women, the NAATs have largely replaced culture, the historic gold standard for chlamydia diagnosis, and the non-amplified probe tests. The latter test is relatively insensitive, successfully detecting only 60–80% of infections in asymptomatic women, and often giving falsely positive results. Culture remains useful in selected circumstances and is currently the only assay approved for testing non-genital specimens. Other method also exist including: ligase chain reaction (LCR), direct fluorescent antibody resting, enzyme immunoassay, and cell culture.
There are three main ways to test for Trichomoniasis.
- The first is known as saline microscopy. This is the most commonly used method and requires an endocervical, vaginal, or penile swab specimen for examination under a microscope. The presence of one or multiple trichomonads constitutes a positive result. This method is cheap but has a low sensitivity (60-70%) often due to an inadequate sample, resulting in false negatives.
- The second diagnostic method is culture, which has historically been the "gold standard" in infectious disease diagnosis. Trichomonas Vaginalis culture tests are relatively cheap; however, sensitivity is still somewhat low (70-89%).
- The third method includes the nucleic acid amplification tests (NAATs) which are more sensitive. These tests are more costly than microscopy and culture, and are highly sensitive (80-90%).
Opportunistic infections caused by Feline Leukemia Virus and Feline immunodeficiency virus retroviral infections can be treated with Lymphocyte T-Cell Immune Modulator.
MAC in patients with HIV disease is theorized to represent recent acquisition rather than latent infection reactivating (which is the case in many other opportunistic infections in immunocompromised patients).
The risk of MAC is inversely related to the patient's CD4 count, and increases significantly when the CD4 count decreases below 50 cells/mm³. Other risk factors for acquisition of MAC infection include using an indoor swimming pool, consumption of raw or partially cooked fish or shellfish, bronchoscopy and treatment with granulocyte stimulating factor.
Disseminated disease was previously the common presentation prior to the advent of highly active antiretroviral therapy (HAART). Today, in regions where HAART is the standard of care, localized disease presentation is more likely. This generally includes a focal lymphadenopathy/lymphadenitis.
Individuals at higher risk are often prescribed prophylactic medication to prevent an infection from occurring. A patient's risk level for developing an opportunistic infection is approximated using the patient's CD4 T-cell count and sometimes other markers of susceptibility. Common prophylaxis treatments include the following:
Most healthy people working with infants and children face no special risk from CMV infection. However, for women of child-bearing age who previously have not been infected with CMV, there is a potential risk to the developing unborn child (the risk is described above in the Pregnancy section). Contact with children who are in day care, where CMV infection is commonly transmitted among young children (particularly toddlers), may be a source of exposure to CMV. Since CMV is transmitted through contact with infected body fluids, including urine and saliva, child care providers (meaning day care workers, special education teachers, as well as mothers) should be educated about the risks of CMV infection and the precautions they can take. Day care workers appear to be at a greater risk than hospital and other health care providers, and this may be due in part to the increased emphasis on personal hygiene in the health care setting.
Recommendations for individuals providing care for infants and children:
- Employees should be educated concerning CMV, its transmission, and hygienic practices, such as handwashing, which minimize the risk of infection.
- Susceptible nonpregnant women working with infants and children should not routinely be transferred to other work situations.
- Pregnant women working with infants and children should be informed of the risk of acquiring CMV infection and the possible effects on the unborn child.
- Routine laboratory testing for CMV antibody in female workers is not specifically recommended due to its high occurrence, but can be performed to determine their immune status.
Diagnosis of FVR is usually by clinical signs, especially corneal ulceration. Definitive diagnosis can be done by direct immunofluorescence or virus isolation. However, many healthy cats are subclinical carriers of feline herpes virus, so a positive test for FHV-1 does not necessarily indicate that signs of an upper respiratory tract infection are due to FVR. Early in the course of the disease, histological analysis of cells from the tonsils, nasal tissue, or nictitating membrane (third eyelid) may show inclusion bodies (a collection of viral particles) within the nucleus of infected cells.
A study conducted on 452 patients revealed that the genotype responsible for higher IL-10 expression makes HIV infected people more susceptible to tuberculosis infection. Another study on HIV-TB co-infected patients also concluded that higher level of IL-10 and IL-22 makes TB patient more susceptible to Immune reconstitution inflammatory syndrome (IRIS). It is also seen that HIV co-infection with tuberculosis also reduces concentration of immunopathogenic matrix metalloproteinase (MMPs) leading to reduced inflammatory immunopathology.
Antigen ELISA and rtPCR are currently the most frequently performed tests to detect virus or viral antigen. Individual testing of ear tissue tag samples or serum samples is performed. It is vital that repeat testing is performed on positive samples to distinguish between acute, transiently infected cattle and PIs. A second positive result, acquired at least three weeks after the primary result, indicates a PI animal. rtPCR can also be used on bulk tank milk (BTM) samples to detect any PI cows contributing to the tank. It is reported that the maximum number of contributing cows from which a PI can be detected is 300.
Some vertically transmitted infections, such as toxoplasmosis and syphilis, can be effectively treated with antibiotics if the mother is diagnosed early in her pregnancy. Many viral vertically transmitted infections have no effective treatment, but some, notably rubella and varicella-zoster, can be prevented by vaccinating the mother prior to pregnancy.
If the mother has active herpes simplex (as may be suggested by a pap test), delivery by Caesarean section can prevent the newborn from contact, and consequent infection, with this virus.
IgG antibody may play crucial role in prevention of intrauterine infections and extensive research is going on for developing IgG-based therapies for treatment and vaccination.
An individual may only develop signs of an infection after a period of subclinical infection, a duration that is called the incubation period. This is the case, for example, for subclinical sexually transmitted diseases such as AIDS and genital warts. Individuals with such subclinical infections, and those that never develop overt illness, creates a reserve of individuals that can transmit an infectious agent to infect other individuals. Because such cases of infections do not come to clinical attention, health statistics can often fail to measure the true prevalence of an infection in a population, and this prevents the accurate modeling of its infectious transmission.
Antibody (Ig) ELISAs are used to detect historical BVDV infection; these tests have been validated in serum, milk and bulk milk samples. Ig ELISAs do not diagnose active infection but detect the presence of antibodies produced by the animal in response to viral infection. Vaccination also induces an antibody response, which can result in false positive results, therefore it is important to know the vaccination status of the herd or individual when interpreting results. A standard test to assess whether virus has been circulating recently is to perform an Ig ELISA on blood from 5–10 young stock that have not been vaccinated, aged between 9 and 18 months. A positive result indicates exposure to BVDV, but also that any positive animals are very unlikely to be PI animals themselves. A positive result in a pregnant female indicates that she has previously been either vaccinated or infected with BVDV and could possibly be carrying a PI fetus, so antigen testing of the newborn is vital to rule this out. A negative antibody result, at the discretion of the responsible veterinarian, may require further confirmation that the animal is not in fact a PI.
At a herd level, a positive Ig result suggests that BVD virus has been circulating or the herd is vaccinated. Negative results suggest that a PI is unlikely however this naïve herd is in danger of severe consequences should an infected animal be introduced. Antibodies from wild infection or vaccination persist for several years therefore Ig ELISA testing is more valuable when used as a surveillance tool in seronegative herds.
In a normal umbilical stump, you first see the umbilicus lose its characteristic bluish-white, moist appearance and become dry and black After several days to weeks, the stump should fall off and leave a pink fleshy wound which continues to heal as it becomes a normal umbilicus.
For an infected umbilical stump, diagnosis is usually made by the clinical appearance of the umbilical cord stump and the findings on history and physical examination. There may be some confusion, however, if a well-appearing neonate simply has some redness around the umbilical stump. In fact, a mild degree is common, as is some bleeding at the stump site with detachment of the umbilical cord. The picture may be clouded even further if caustic agents have been used to clean the stump or if silver nitrate has been used to cauterize granulomata of the umbilical stump.
Recovery from an anaerobic infection depends on adequate and rapid management. The main principles of managing anaerobic infections are neutralizing the toxins produced by anaerobic bacteria, preventing the local proliferation of these organisms by altering the environment and preventing their dissemination and spread to healthy tissues.
Toxin can be neutralized by specific antitoxins, mainly in infections caused by Clostridia (tetanus and botulism). Controlling the environment can be attained by draining the pus, surgical debriding of necrotic tissue, improving blood circulation, alleviating any obstruction and by improving tissue oxygenation. Therapy with hyperbaric oxygen (HBO) may also be useful. The main goal of antimicrobials is in restricting the local and systemic spread of the microorganisms.
The available parenteral antimicrobials for most infections are metronidazole, clindamycin, chloramphenicol, cefoxitin, a penicillin (i.e. ticarcillin, ampicillin, piperacillin) and a beta-lactamase inhibitor (i.e. clavulanic acid, sulbactam, tazobactam), and a carbapenem (imipenem, meropenem, doripenem, ertapenem). An antimicrobial effective against Gram-negative enteric bacilli (i.e. aminoglycoside) or an anti-pseudomonal cephalosporin (i.e. cefepime ) are generally added to metronidazole, and occasionally cefoxitin when treating intra-abdominal infections to provide coverage for these organisms. Clindamycin should not be used as a single agent as empiric therapy for abdominal infections. Penicillin can be added to metronidazole in treating of intracranial, pulmonary and dental infections to provide coverage against microaerophilic streptococci, and Actinomyces.
Oral agents adequate for polymicrobial oral infections include the combinations of amoxicillin plus clavulanate, clindamycin and metronidazole plus a macrolide. Penicillin can be added to metronidazole in the treating dental and intracranial infections to cover "Actinomyces" spp., microaerophilic streptococci, and "Arachnia" spp. A macrolide can be added to metronidazole in treating upper respiratory infections to cover "S. aureus" and aerobic streptococci. Penicillin can be added to clindamycin to supplement its coverage against "Peptostreptococcus" spp. and other Gram-positive anaerobic organisms.
Doxycycline is added to most regimens in the treatment of pelvic infections to cover chlamydia and mycoplasma. Penicillin is effective for bacteremia caused by non-beta lactamase producing bacteria. However, other agents should be used for the therapy of bacteremia caused by beta-lactamase producing bacteria.
Because the length of therapy for anaerobic infections is generally longer than for infections due to aerobic and facultative anaerobic bacteria, oral therapy is often substituted for parenteral treatment. The agents available for oral therapy are limited and include amoxacillin plus clavulanate, clindamycin, chloramphenicol and metronidazole.
In 2010 the American Surgical Society and American Society of Infectious Diseases have updated their guidelines for the treatment of abdominal infections.
The recommendations suggest the following:
For mild-to-moderate community-acquired infections in adults, the agents recommended for empiric regimens are: ticarcillin- clavulanate, cefoxitin, ertapenem, moxifloxacin, or tigecycline as single-agent therapy or combinations of metronidazole with cefazolin, cefuroxime, ceftriaxone, cefotaxime, levofloxacin, or ciprofloxacin. Agents no longer recommended are: cefotetan and clindamycin ( Bacteroides fragilis group resistance) and ampicillin-sulbactam (E. coli resistance) and ainoglycosides (toxicity).
For high risk community-acquired infections in adults, the agents recommended for empiric regimens are: meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, ciprofloxacin or levofloxacin in combination with metronidazole, or ceftazidime or cefepime in combination with metronidazole. Quinolones should not be used unless hospital surveys indicate >90% susceptibility of "E. coli" to quinolones.
Aztreonam plus metronidazole is an alternative, but addition of an agent effective against gram-positive cocci is recommended. The routine use of an aminoglycoside or another second agent effective against gram-negative facultative and aerobic bacilli is not recommended in the absence of evidence that the infection is caused by resistant organisms that require such therapy.
Empiric use of agents effective against enterococci is recommended and agents effective against methicillin-resistant "S. aureus" (MRSA) or yeast is not recommended in the absence of evidence of infection due to such organisms.
Empiric antibiotic therapy for health care-associated intra-abdominal should be driven by local microbiologic results. Empiric coverage of likely pathogens may require multidrug regimens that include agents with expanded spectra of activity against gram-negative aerobic and facultative bacilli. These include meropenem, imipenem-cilastatin, doripenem, piperacillin-tazobactam, or ceftazidime or cefepime in combination with metronidazole. Aminoglycosides or colistin may be required.
Antimicrobial regimens for children include an aminoglycoside-based regimen, a carbapenem (imipenem, meropenem, or ertapenem), a beta-lactam/beta-lactamase-inhibitor combination (piperacillin-tazobactam or ticarcillin-clavulanate), or an advanced-generation cephalosporin (cefotaxime, ceftriaxone, ceftazidime, or cefepime) with metronidazole.
Clinical judgment, personal experience, safety and patient compliance should direct the physician in the choice of the appropriate antimicrobial agents. The length of therapy generally ranges between 2 and 4 weeks, but should be individualized depending on the response. In some instances treatment may be required for as long as 6–8 weeks, but can often be shortened with proper surgical drainage.