Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The diagnosis of renal medullary carcinoma is typically made after individuals with sickle cell trait present with the typical signs and symptoms outlined above, in combination with radiographic imaging (usually abdominal/pelvic CT scan) studies and ultimately surgical biopsy and pathological examination of the tumor. Findings on radiographic examination are non-specific and can reveal a mass deep within the kidney. Histopathology studies show a distinctive pattern that can be distinguished from other renal tumors.
Renal medullary carcinoma is extremely rare and it is not currently possible to predict those individuals with sickle cell trait who will eventually develop this cancer. It is hoped that early detection could result in better outcomes but screening is not feasible.
Ultrasonography is the primary method to evaluate autosomal recessive polycystic kidney disease, particularly in the perinatal and neonatal.
The diagnosis of nephronophthisis can be obtained via a renal ultrasound, family history and clinical history of the affected individual according to Stockman, et al.
Polycystic kidney disease can be ascertained via a CT scan of abdomen, as well as, an MRI and ultrasound of the same area. A physical exam/test can reveal enlarged liver, heart murmurs and elevated blood pressure
As metanephric adenomas are considered benign, they can be left in place, i.e. no treatment is needed.
ADPKD individuals might have a normal life; conversely, ARPKD can cause kidney dysfunction and can lead to kidney failure by the age of 40-60. ADPKD1 and ADPKD2 are very different, in that ADPKD2 is much milder.
Currently, there are no therapies proven effective to prevent the progression of polycystic kidney disease (autosomal dominant).
Metanephric adenoma is diagnosed histologically. The tumours can be located at upper pole, lower pole and mid-hilar region of the kidney; they are well circumscribed but unencapsulated, tan pink, with possible cystic and hemorrhagic foci. They show a uniform architecture of closely packed acinar or tubular structures of mature and bland appearance with scanty interposed stroma. Cells are small with dark staining nuclei and inconspicuous nucleoli. Blastema is absent whereas calcospherites may be present. Glomeruloid figures are a striking finding, reminiscent of early fetal metenephric tissue. The lumen of the acini may contain otherwise epithelial infoldings or fibrillary material but it is quite often empty. Mitoses are conspicuously absent.
In the series reported by Jones "et al." tumour cells were reactive for Leu7 in 3 cases of 5, to vimentine in 4 of 6, to cytocheratin in 2 of 6, to epithelial membrane antigen in 1 of 6 cases and muscle specific antigen in 1 of 6.
Olgac "et al." found that intense and diffuse immunoreactivity for alpha-methylacyl-CoA racemase (AMACR) is useful in differentiating renal cell carcinoma from MA but a panel including AMACR, CK7 and CD57 is better in this differential diagnosis.
Differential diagnosis may be quite difficult indeed as exemplified by the three malignancies initially diagnosed as MA that later metastasized, in the report by Pins et al.
The treatment options for autosomal recessive polycystic kidney disease, given there is no current cure, are:
- Medications for hypertension
- Medications and/or surgery for pain
- Antibiotics for infection
- Kidney transplantation(in serious cases)
- Dialysis (if renal failure)
The management of this condition can be done via-improvement of any electrolyte imbalance, as well as, hypertension and anemia treatment as the individuals condition warrants.
It is an autosomal recessive disease.
Sonography shows bilateral small kidneys with loss of corticomedullary junction and multiple cysts only in the medulla. Cysts may only be seen if they are large enough, they are rarely visible early in disease.
Patients with medullary cystic disease present with similar features as juvenile nephronophthisis but they can be differentiated by:
1. Absence of growth retardation.
2. Age of presentation is third or fourth decade.
3. Hypertension may occur (in JN, hypertension is not seen).
In polycystic kidney disease, there is bilateral enlargement of kidneys (small kidneys in JN).
Genetic testing plays an increasingly important role in confirming the diagnosis where the clinical features do not amount to proof.
Management of sickle nephropathy is not separate from that of overall patient management. In addition, however, the use of ACE inhibitors has been associated with improvement of the hyperfiltration glomerulopathy. Three-year graft and patient survival in kidney transplant recipients with sickle nephropathy is lower when compared to those with other causes of end-stage kidney disease.
A family history of end-stage renal disease with hearing impairment is suggestive of Alport syndrome, but other conditions can cause this combination of abnormalities. Most can be distinguished by clinical features. The finding of haematuria in relatives is suggestive.
While X-linked inheritance is the most common pattern, genetic testing is revealing that atypical presentations may be more common than currently thought.
Biochemical studies reveal hypophosphatemia (low blood phosphate), elevated alkaline phosphatase and low serum 1, 25 dihydroxyvitamin D levels. Routine laboratory tests do not include serum phosphate levels and this can result in considerable delay in diagnosis. Even when low phosphate is measured, its significance is often overlooked. The next most appropriate test is measurement of urine phosphate levels. If there is inappropriately high urine phosphate (phosphaturia) in the setting of low serum phosphate (hypophosphatemia), there should be a high suspicion for tumor-induced osteomalacia. FGF23 (see below) can be measured to confirm the diagnosis but this test is not widely available.
Once hypophosphatemia and phosphaturia have been identified, a search for the causative tumor should begin. These are small and difficult to define. Gallium-68 DOTA-Octreotate (DOTA-TATE) positron emission tomography (PET) scanning is the best way to locate these tumors. If this scan is not available, other options include Indium-111 Octreotide (Octreoscan) SPECT/CT, whole body CT or MRI imaging.
It is the most common genetic cause of end stage renal disease (renal failure) in childhood and adolescence.
Regardless of location, all rhabdoid tumours are highly aggressive, have a poor prognosis, and tend to occur in children less than two years of age.
Intraductal papillary mucinous neoplasms can come to clinical attention in a variety of different ways. The most common symptoms include abdominal pain, nausea and vomiting. The most common signs patients have when they come to medical attention include jaundice (a yellowing of the skin and eyes caused by obstruction of the bile duct), weight loss, and acute pancreatitis. These signs and symptoms are not specific for an intraductal papillary mucinous neoplasm, making it more difficult to establish a diagnosis. Doctors will therefore often order additional tests.
Once a doctor has reason to believe that a patient may have an intraductal papillary mucinous neoplasm, he or she can confirm that suspicion using one of a number of imaging techniques. These include computerized tomography (CT), endoscopic ultrasound (EUS), and magnetic resonance cholangiopancreatography (MRCP). These tests will reveal dilatation of the pancreatic duct or one of the branches of the pancreatic duct. In some cases a fine needle aspiration (FNA) biopsy can be obtained to confirm the diagnosis. Fine needle aspiration biopsy can be performed through an endoscope at the time of endoscopic ultrasound, or it can be performed through the skin using a needle guided by ultrasound or CT scanning.
IPMN forms cysts (small cavities or spaces) in the pancreas. These cysts are visible in CT scans (X-ray computed tomography). However, many pancreatic cysts are benign (see Pancreatic disease).
A growing number of patients are now being diagnosed before they develop symptoms (asymptomatic patients). In these cases, the lesion in the pancreas is discovered accidentally (by chance) when the patient is being scanned (i.e. undergoing an ultrasound, CT or MRI scan) for another reason. Up to 6% of patients undergoing pancreatic resection did so for treatment of incidental IPMNs.
In 2011, scientists at Johns Hopkins reported that they have developed a gene-based test that can be used to distinguish harmless from precancerous pancreatic cysts. The test may eventually help patients with harmless cysts avoid needless surgery. Bert Vogelstein and his colleagues discovered that almost all of the precancerous cysts (intraductal papillary mucinous neoplasms) of the pancreas have mutations in the KRAS and/or the GNAS gene. The researchers then tested a total of 132 intraductal papillary mucinous neoplasms for mutations in KRAS and GNAS. Nearly all (127) had mutations in GNAS, KRAS or both. Next, the investigators tested harmless cysts such as serous cystadenomas, and the harmless cysts did not have GNAS or KRAS mutations. Larger numbers of patients must be studied before the gene-based test can be widely offered.
Serous cystic neoplasms can come to clinical attention in a variety of ways. The most common symptoms are very non-specific and include abdominal pain, nausea and vomiting. In contrast to many of the other tumors of the pancreas, patients rarely develop jaundice (a yellowing of the skin and eyes caused by obstruction of the bile duct), or weight loss. These signs and symptoms are not specific for a serous cystic neoplasm, making it more difficult to establish a diagnosis. Doctors will therefore often order additional tests.
Once a doctor has reason to believe that a patient may have serous cystic neoplasm, he or she can confirm that suspicion using one of a number of imaging techniques. These include computerized tomography (CT), endoscopic ultrasound (EUS), and magnetic resonance cholangiopancreatography (MRCP). These tests will reveal a cystic mass within the pancreas. The cysts do not communicate with the larger pancreatic ducts. In some cases a fine needle aspiration (FNA) biopsy can be obtained to confirm the diagnosis. Fine needle aspiration biopsy can be performed through an endoscope at the time of endoscopic ultrasound, or it can be performed through the skin using a needle guided by ultrasound or CT scanning.
A growing number of patients are now being diagnosed before they develop symptoms (asymptomatic patients). In these cases, the lesion in the pancreas is discovered accidentally (by chance) when the patient is being scanned (x-rayed) for another reason.
The 1973 WHO grading system for TCCs (papilloma, G1, G2 or G3) is most commonly used despite being superseded by the 2004 WHO grading (papillary neoplasm of low malignant potential [PNLMP], low grade, and high grade papillary carcinoma).
Serum chemistries are identical in tumor-induced osteomalacia, X-linked hypophosphatemic rickets (XHR) and autosomal dominant hypophosphatemic rickets (ADHR). A negative family history can be useful in distinguishing tumor induced osteomalacia from XHR and ADHR. If necessary, genetic testing for PHEX (phosphate regulating gene with homologies to endopepetidase on the X-chromosome) can be used to conclusively diagnose XHR and testing for the FGF-23 gene will identify patients with ADHR.
Immunohistochemistry is performed as additional test. The strong positive expression of cytokeratin 19 was showed in primary SCTC, and negative in metastatic SCTC.
There are no specific radiological tests for SCTC verification. However these tests might be useful for identification of tumor borders and in planning of surgery.
The histologic diagnosis of malignant rhabdoid tumour depends on identification of characteristic rhabdoid cells—large cells with eccentrically located nuclei and abundant, eosinophilic cytoplasm. However, the histology can be heterogeneous and the diagnosis of MRT can often be difficult. Misclassifications can occur.
In MRTs, the INI1 gene (SMARCB1)on chromosome 22q functions as a classic tumour suppressor gene. Inactivation of INI1 can occur via deletion, mutation, or acquired UPD.
In a recent study, SNP array karyotyping identified deletions or LOH of 22q in 49/51 rhabdoid tumours. Of these, 14 were copy neutral LOH (or acquired UPD), which is detectable by SNP array karyotyping, but not by FISH, cytogenetics, or arrayCGH. MLPA detected a single exon homozygous deletion in one sample that was below the resolution of the SNP array. SNP array karyotyping can be used to distinguish, for example, a medulloblastoma with an isochromosome 17q from a primary rhabdoid tumour with loss of 22q11.2. When indicated, molecular analysis of INI1 using MLPA and direct sequencing may then be employed. Once the tumour-associated changes are found, an analysis of germline DNA from the patient and the parents can be done to rule out an inherited or de novo germline mutation or deletion of INI1, so that appropriate recurrence risk assessments can be made.
Radiologically
- Odontogenic Myxoma
- Ameloblastoma
- Central Giant Cell Granuloma
- Adenomatoid odontogenic tumor
Histologically
- Orthokeratocyst
- Radicular cyst (particularly if the OKC is very inflamed)
- Unicystic ameloblastoma